Repository logo
 

Search Results

Now showing 1 - 10 of 21
  • Performance of an a-Si:H MMI multichannel beam splitter analyzed by computer simulation
    Publication . Costa, João; Almeida, Daniel; Fantoni, Alessandro; Lourenço, Paulo; Fernandes, Miguel; Vieira, Manuela
    Optical power splitters are widely used in many applications and di_erent typologies have been developed for devices dedicated to this function. Among them, the multimode interference design is especially attractive for its simplicity and performance making it a strong candidate for low-cost applications, such as photonics lab-on-chips for biomedical point of care systems. Within this context, splitting the optical beam equally into multiple channels is of fundamental importance to provide reference arms, parallel sensing of di_erent biomarkers and allowing multiplexed reading schemes. From a theoretical point of view, the multimode structure allows implementation of the power splitting function for an arbitrary number of channels, but in practice its performance is limited by lithographic mask imperfections and waveguide width. In this work we analyze multimode waveguide structures, based on amorphous silicon (a-Si:H) over insulator (SiO2), which can be produced by the PECVD deposition technique. The study compares the performance of several 1 to N designs optimized to provide division of the fundamental quasi-TM mode as a function of input polarization and lithographic roughness. The performance is analyzed in terms of output power uniformity and attenuation and is based on numerical simulations using the Beam Propagation Method and Eigenmode Expansion Propagation Methods.
  • Simulation of a parallel waveguide array structure suitable for interrogation scheme in a plasmonic biossensor
    Publication . Costa, João; Fantoni, Alessandro; Lourenço, Paulo; Vieira, Manuela
    Surface plasmon resonance sensors have emerged has one of the most suitable approaches for biosensing. A common approach consists of exciting the plasmons at the interface between a functionalized metal film and a sample medium containing the analyte. The propagation of the surface plasmon is highly dependent on changes of the refractive index of the surrounding environment thus providing a mechanism for sensing. The typical interrogation schemes are based on scanning over the wavelength or the incident angle to search for the resonance condition. These solutions require additional motor-driven rotation stages, prisms or other bulky components, introducing complexity which prevents the fabrication of fully on-chip devices. This work reports a simulation study of an amorphous silicon waveguide structure consisting of an array of parallel surface plasmon interferometers with different propagation lengths, each one comprising a thin layer of gold embedded into a-Si:H waveguide. The surface plasmon modes at the end of the plasmonic structure can interfere constructively or destructively depending on the refractive index of the analyte and the interferometer’s length. The variation of the output intensity at the end of each element of the array provides a convenient interrogation scheme that is suitable for on-chip integration. In this paper we investigate this setup and analyze the output power at the end of the array as a function of the refractive index of the sampling medium. The setup is simulated and characterized by the eigenmode expansion method.
  • Optimisation of a plasmonic parallel waveguide sensor based on amorphous silicon compounds
    Publication . Costa, João; Fantoni, Alessandro; Lourenço, Paulo; Vieira, Manuela
    This work reports the simulation of a plasmonic waveguide sensor working in the visible range based on amorphous silicon compounds. Typical plasmonic sensor interrogation schemes are based on scanning over the wavelength or the incident angle to search for the resonance condition. These solutions usually require expensive or bulky components, such as prisms, motor-driven rotation stages or tunable lasers. In this work we propose an amorphous silicon nitride waveguide structure consisting of an array of parallel surface plasmon interferometers of different lengths, each one comprising a thin layer of aluminium embedded into the waveguide. Using modal decomposition simulations, we show that the variation of the output power at the end of each waveguide array element provides a convenient interrogation scheme. By exploring amorphous silicon compounds that can be deposited by Pressure Enhanced Chemical Vapor Deposition (PECVD) at low temperatures, we aim to achieve a low-cost fabrication process that is compatible with backend CMOS processing and wavelengths in the visible range.
  • Surface plasmon resonance sensing structure
    Publication . Lourenço, Paulo; Fantoni, Alessandro; Louro, Paula; Costa, João; Vieira, Manuela
    Surface Plasmon Resonance occurs when a polarized electromagnetic field strikes a metallic surface at the separation interface between metal and an insulator. This phenomenon is characterized by the conduction electrons resonant oscillation at the interface, resulting on propagating plasmon waves on the metallic surface. Since this wave is generated at the boundary between the metallic surface and the external medium, these structures are highly sensitive to alterations on the surrounding environment, namely the refractive index, and may be used in sensing structures. The large majority of these devices use noble metals, namely gold or silver, as the active material. These metals present low resistivity, which leads to low optical losses in the visible and near infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and silver’s lower stability can be overcome through the deposition of an alumina layer. However, their high cost is a limiting factor if the intended target is large scale manufacturing. In this work, we performed Finite Differences Time Domain simulations on a Surface Plasmon Resonance based sensing structure, considering cost-effective materials such as aluminium for the active metal and hydrogenated amorphous silicon for the waveguide supporting elements, and verified that these structures are able to detect refractive index variations of the surrounding environment at the 1550 µm operating wavelength. This sensing architecture has also been modelled with dispersive materials, losses included, to reflect as much as possible physical reality, revealing good performance capabilities when compared to similar noble metals based devices.
  • Electromagnetic simulation of amorphous silicon waveguides
    Publication . Lourenço, Paulo; Fantoni, Alessandro; Pinho, Pedro
    In the past several decades, the Finite-Difference Time-Domain (FDTD) method has become one of the most powerful numerical techniques in solving the Maxwell’s curl equations and has been widely applied to solve complex optical and photonic problems. This method divides space and time into a regular grid and simulates the time evolution of Maxwell’s equations. This paper reports some results, obtained by a set of FDTD simulations, about the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. Light absorption dependence on the material properties and waveguide curvature radius are analysed for wavelengths in the infrared spectrum. Wavelength transmission efficiency is determined analysing the decay of the light power along the waveguides and the obtained results show that total losses should remain within acceptable limits when considering curvature radius as small as 3 μm at its most.
  • Multichannel detector system for surface plasmon resonance biosensors
    Publication . Fernandes, Miguel; Fantoni, Alessandro; Soares, Paulo; Lourenço, Paulo; Vieira, Manuela
    Photonic systems are gaining an important role in the field of medical diagnosis due to the achievable high sensitivity and selectivity and low cost, enabling the fabrication of disposable point of care diagnosis systems for multiple pathologies. In this work we present the detector subsystem developed for a multi-channel surface plasmon resonance (SPR) based sensor. The core of the system is a multimode interferometer splitter, fabricated in amorphous silicon, followed by multiple sensitive SPR structures with a functionalized gold layer that modulate the transmitted light waves, in the presence of the biomarker, which are then detected by infrared detectors. For this purpose a highly adaptable detection system based on a InGaAs line CCD device was developed. The IR sensor used in the prototype has 128 (50 x 250 μm) pixels but other formats are supported. To adapt to different light guiding structures, the CCD pixels can be combined forming multiple detection channels. Optical sensor configuration and readout operations are performed trough a USB connection using the SCPI standard. The system includes an analog front end with a programmable gain amplifier and offset adjustment followed by a fast analog to digital converter feeding the data to a STM32 family processor. A computer application was also developed for system configuration and signal readout and storage. The testing results from the complete system are presented. Documentation of the developed system is provided for third party use, all the material generated within this work is available online in a repository.
  • Silicon nitride based devices: lithographic mask roughness mitigation
    Publication . Lourenço, Paulo; Fantoni, Alessandro; Costa, João; Vieira, Manuela
    Lithographic technology has been one of the main upholders to Moore's law in the semiconductor industry for the last decades. The underlying reason that enabled the evolution in semiconductor industry has been a steady silicon wafer printing cost, while being able to dramatically increase the number of nodes that can be printed per chip. Key developments in lithography such as wavelength decreasing, together with performance increase in lens and imaging technology, should be accounted for almost all the reduction of cost per function in integrated circuits technology. In this work, we will be presenting the simulation of two mitigation techniques for the impact of defects introduced by manufacturing processes. Namely, the lithographic mask limited resolution on the geometry of the representative device. These perturbations are a consequence of the lithographic mask limited resolution on the geometry of the representative device. For this purpose, the Beam Propagation and Finite Differences Time Domain methods will be used to simulate a multimode interference structure based on silicon nitride. The structure will be affected by previously mentioned perturbations and we expect results revealing a strong dependence between mask resolution, and imbalance and power loss. Two strategies will be followed concerning the mitigation of power loss and imbalance introduced by the limited resolution of lithographic mask: - Access waveguides tapering; - Adjustable power splitting ratios through the electro-optic effect. Through both strategies we aim to achieve an improvement on device’s performance but, in the latter are expected finer tuning capabilities, being enabled by dynamic compensation of power loss and imbalance when in a closed loop control architecture.
  • Finite-difference time-domain analysis of hydrogenated amorphous silicon and aluminum surface plasmon waveguides
    Publication . Lourenço, Paulo; Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Vieira, Manuela
    The large majority of surface plasmon resonance (SPR)-based devices use noble metals, namely gold or silver, in their manufacturing process. These metals present low resistivity, which leads to low optical losses in the visible and near-infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and the lower stability of silver can be overcome through the deposition of an alumina layer, for instance. However, their high cost is a limiting factor if the intended target is large-scale manufacturing. This work considers a cost-effective approach through the selection of aluminum as the plasmonic material and hydrogenated amorphous silicon instead of its crystalline counterpart. This SPR structure relies on Fano resonance to improve its response to refractive index deviations of the surrounding environment. Fano resonance is highly sensitive to slight changes of the medium, hence the reason we incorporated this interference phenomenon in the proposed sensing structure. We report the results obtained when conducting finite-difference timedomain algorithm-based simulations on this metal–dielectric–metal structure when the active metal is aluminum, gold, and silver. Then, we evaluate their sensitivity, detection accuracy, and resolution. The obtained results for our proposed sensing structure show good linearity and similar parameter performance as the ones obtained when using gold or silver as plasmonic materials.
  • Simulation and analysis of surface plasmon resonance based sensor
    Publication . Lourenço, Paulo; Vieira, Manuela; Fantoni, Alessandro
    In this paper, we will be presenting the results obtained through Finite-Difference Time Domain simulations on a photonic sensing architecture. This device consists on a dielectric/metal/dielectric sensing structure. Under adequate conditions, when electromagnetic energy strikes the different dielectrics interface, these devices develop surface plasmon resonances which are extremely sensitive to refractive index variations, thus being able to be used as sensing structures. Considering their minute dimensions, monolithic integration is attainable and by incorporating cost-effective materials in their manufacture, devices' mass production may be efficient and information and communication technological systems' resiliency will be greatly facilitated. Next, this architecture is analysed under amplitude and refractive index sensitivity perspectives, its performance is analysed and considerations about its use as a sensing device are contemplated. Finally, conclusions of our work are presented and future development directions are described.
  • Simulation of an early warning fire system
    Publication . Lourenço, Paulo; Fantoni, Alessandro; Vieira, Manuela
    In this paper, we will be using separate software tools (wireless network and Finite Differences Time Domain based simulators) to simulate the implementation of a wireless sensor network model based on low-rate/power transmission technology. The system operates in an unlicensed frequency range and the sensing nodes rely on surface plasmon resonance phenomenon for the detection of combustion by-products. More specifically, our simulations contemplate a system for early detection of fire in densely forested areas, which will then issue a warning in an automated way. As late detection of these events usually leads to severe flora, terrain, wild life and societal impact, an early warning system will provide better event assessment conditions, thus enabling efficient resources allocation, adequate response and would certainly be a promising improvement in minimizing such disruptive impairments.