Browsing by Issue Date, starting with "2020-03-02"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Simulation of a parallel waveguide array structure suitable for interrogation scheme in a plasmonic biossensorPublication . Costa, João; Fantoni, Alessandro; Lourenço, Paulo; Vieira, ManuelaSurface plasmon resonance sensors have emerged has one of the most suitable approaches for biosensing. A common approach consists of exciting the plasmons at the interface between a functionalized metal film and a sample medium containing the analyte. The propagation of the surface plasmon is highly dependent on changes of the refractive index of the surrounding environment thus providing a mechanism for sensing. The typical interrogation schemes are based on scanning over the wavelength or the incident angle to search for the resonance condition. These solutions require additional motor-driven rotation stages, prisms or other bulky components, introducing complexity which prevents the fabrication of fully on-chip devices. This work reports a simulation study of an amorphous silicon waveguide structure consisting of an array of parallel surface plasmon interferometers with different propagation lengths, each one comprising a thin layer of gold embedded into a-Si:H waveguide. The surface plasmon modes at the end of the plasmonic structure can interfere constructively or destructively depending on the refractive index of the analyte and the interferometer’s length. The variation of the output intensity at the end of each element of the array provides a convenient interrogation scheme that is suitable for on-chip integration. In this paper we investigate this setup and analyze the output power at the end of the array as a function of the refractive index of the sampling medium. The setup is simulated and characterized by the eigenmode expansion method.
- Surface plasmon resonance sensing structurePublication . Lourenço, Paulo; Fantoni, Alessandro; Louro, Paula; Costa, João; Vieira, ManuelaSurface Plasmon Resonance occurs when a polarized electromagnetic field strikes a metallic surface at the separation interface between metal and an insulator. This phenomenon is characterized by the conduction electrons resonant oscillation at the interface, resulting on propagating plasmon waves on the metallic surface. Since this wave is generated at the boundary between the metallic surface and the external medium, these structures are highly sensitive to alterations on the surrounding environment, namely the refractive index, and may be used in sensing structures. The large majority of these devices use noble metals, namely gold or silver, as the active material. These metals present low resistivity, which leads to low optical losses in the visible and near infrared spectrum ranges. Gold shows high environmental stability, which is essential for long-term operation, and silver’s lower stability can be overcome through the deposition of an alumina layer. However, their high cost is a limiting factor if the intended target is large scale manufacturing. In this work, we performed Finite Differences Time Domain simulations on a Surface Plasmon Resonance based sensing structure, considering cost-effective materials such as aluminium for the active metal and hydrogenated amorphous silicon for the waveguide supporting elements, and verified that these structures are able to detect refractive index variations of the surrounding environment at the 1550 µm operating wavelength. This sensing architecture has also been modelled with dispersive materials, losses included, to reflect as much as possible physical reality, revealing good performance capabilities when compared to similar noble metals based devices.
- Wayfinding in complex buildings using visible light communicationPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, PedroThis paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC photodetector with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is tested, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.