Loading...
22 results
Search Results
Now showing 1 - 10 of 22
- Alternative sérum biomarkers of bacteraemia for intensive care unit patientsPublication . Araújo, Rúben; Von Rekowski, Cristiana; Bento, Luís; Fonseca, Tiago AH; Calado, CecíliaThe diagnosis of infections in hospital or clinical settings usually involves a series of time-consuming steps, including biological sample collection, culture growth of the organism isolation and subsequent characterization. For this, there are diverse infection biomarkers based on blood analysis, however, these are of limited use in patients presenting confound processes as inflammatory process as occurring at intensive care units. In this preliminary study, the application of serum analysis by FTIR spectroscopy, to predict bacteraemia in 102 critically ill patients in an ICU was evaluated. It was analysed the effect of spectra pre-processing methods and spectral sub-regions on t-distributed stochastic neighbour embedding. By optimizing Support Vector Machine (SVM) models, based on normalised second derivative spectra of a smaller subregion, it was possible to achieve a good bacteraemia predictive model with a sensitivity and specificity of 76%. Since FTIR spectra of serum is acquired in a simple, economic and rapid mode, the technique presents the potential to be a cost-effective methodology of bacteraemia identification, with special relevance in critically ill patients, where a rapid infection diagnostic will allow to avoid the unnecessary use of antibiotics, which ultimately will ease the load on already fragile patients' metabolism.
- A new method to predict genotoxic effects based on serum molecular profilePublication . Araújo, Rúben; Ramalhete, Luís; Paz, Hélder; Ladeira, Carina; Calado, CecíliaIt is critical to develop new methods to assess genotoxic effects in human biomonitoring since the conventional methods are usually laborious, time-consuming, and expensive. It is aimed to evaluate if the analysis of a drop of serum by Fourier Transform Infrared spectroscopy, allow to assess genotoxic effects in occupational exposure to cytostatic drugs in hospital professionals, as obtained by the lymphocyte cytokinesis-block micronucleus assay. It was considered peripheral blood from hospital professionals exposed to cytostatic drugs (n = 22) and from a non-exposed group (n = 36). It was observed that workers occupationally exposed presented a higher number of micronuclei (p < 0.05) in lymphocytes, in relation to the non-exposed group. The serum Fourier Transform Infrared spectra from exposed workers presented diverse different peaks (p < 0.01) in relation to the non-exposed group. The hierarchical cluster analysis of serum spectra separated serum samples of the exposed group from the non-exposed group with 61% sensitivity and 88% specificity. A support vector machine model of serum spectra enables to predict exposure with high accuracy (0.91), precision (0.89), sensitivity (0.86), F1 score (0.87) and AUC (0.96). Therefore, Fourier Transform Infrared spectroscopic analysis of a drop of serum enabled to predict in a rapid and simple mode the genotoxic effects of cytostatic drugs. The method presents therefore potential for high-dimension screening of exposure of genotoxic substances, due to its simplicity and rapid setup mode.
- Predicting cellular rejection of renal allograft based on the serum proteomic fingerprintPublication . Ramalhete, Luís; Vieira, Miguel Bigotte; Araújo, Rúben; Vigia, Emanuel; Aires, Inês; Ferreira, Aníbal; Calado, CecíliaKidney transplantation is an essential medical procedure that significantly enhances the survival rates and quality of life for patients with end-stage kidney disease. However, despite advancements in immunosuppressive therapies, allograft rejection remains a leading cause of organ loss. Notably, predictions of cellular rejection processes primarily rely on biopsy analysis, which is not routinely performed due to its invasive nature. The present work evaluates if the serum proteomic fingerprint, as acquired by Fourier Transform Infrared (FTIR) spectroscopy, can predict cellular rejection processes. We analyzed 28 serum samples, corresponding to 17 without cellular rejection processes and 11 associated with cellular rejection processes, as based on biopsy analyses. The leave-one-out-cross validation procedure of a Naïve Bayes model enabled the prediction of cellular rejection processes with high sensitivity and specificity (AUC > 0.984). The serum proteomic profile was obtained in a high-throughput mode and based on a simple, rapid, and economical procedure, making it suitable for routine analyses and large-scale studies. Consequently, the current method presents a high potential to predict cellular rejection processes translatable to clinical scenarios, and that should continue to be explored.
- Label-free discrimination of T and B lymphocyte activation based on vibrational spectroscopy – A machine learning approachPublication . Ramalhete, Luís; Araújo, Rúben; Ferreira, Aníbal; Calado, CecíliaB and T-lymphocytes are major players of the specific immune system, responsible by an efficient response to target antigens. Despite the high relevance of these cells’ activation in diverse human pathophysiological pro cesses, its analysis in clinical context presents diverse constraints. In the present work, MIR spectroscopy was used to acquire the cells molecular profile in a label-free, simple, rapid, economic, and high-throughput mode. Recurring to machine learning algorithms MIR data was subsequently evaluated. Models were developed based on specific spectral bands as selected by Gini index and the Fast Correlation Based Filter. To determine if it was, possible to predict from the spectra, if B and T lymphocyte were activated, and what was the molecular fingerprint of T- or B- lymphocyte activation. The molecular composition of activated lymphocytes was so different from naïve cells, that very good pre diction models were developed with whole spectra (with AUC=0.98). Activated B lymphocytes also present a very distinct molecular profile in relation to activated T lymphocytes, leading to excellent prediction models, especially if based on target bands (AUC=0.99). The identification of critical target bands, according to the metabolic differences between B and T lymphocytes and in association with the molecular mechanism of the activation process highlighted bands associated to lipids and glycogen levels. The method developed presents therefore, appealing characteristics to promote a new diagnostic tool to analyze and discriminate B from T-lymphocytes
- Infection biomarkers based on metabolomicsPublication . Araújo, Rúben; Bento, Luís; Fonseca, Tiago AH; Von Rekowski, Cristiana; Ribeiro Da Cunha, Bernardo; Calado, CecíliaCurrent infection biomarkers are highly limited since they have low capability to predict infection in the presence of confounding processes such as in non-infectious inflammatory processes, low capability to predict disease outcomes and have limited applications to guide and evaluate therapeutic regimes. Therefore, it is critical to discover and develop new and effective clinical infection biomarkers, especially applicable in patients at risk of developing severe illness and critically ill patients. Ideal biomarkers would effectively help physicians with better patient management, leading to a decrease of severe outcomes, personalize therapies, minimize antibiotics overuse and hospitalization time, and significantly improve patient survival. Metabolomics, by providing a direct insight into the functional metabolic outcome of an organism, presents a highly appealing strategy to discover these biomarkers. The present work reviews the desired main characteristics of infection biomarkers, the main metabolomics strategies to discover these biomarkers and the next steps for developing the area towards effective clinical biomarkers.
- A Simple, label-free, and high-throughput method to evaluate the epigallocatechin-3-gallate impact in plasma molecular profilePublication . Araújo, Rúben; Ramalhete, Luís; Da Paz, Helder; Ribeiro, Edna; Calado, CecíliaEpigallocatechin-3-gallate (EGCG), the major catechin presente in green tea, presents diverse appealing biological activities, such as antioxidative, anti-inflammatory, antimicrobial, and antiviral activities, among others. The present work evaluated the impact in the molecular profile of human plasma from daily consumption of 225 mg of EGCG for 90 days. Plasma from peripheral blood was collected from 30 healthy human volunteers and analyzed by high-throughput Fourier transform infrared spectroscopy. To capture the biochemical information while minimizing the interference of physical phenomena, several combinations of spectra pre-processing methods were evaluated by principal component analysis. The pre-processing method that led to the best class separation, that is, between the plasma spectral data collected at the beginning and after the 90 days, was a combination of atmospheric correction with a second derivative spectra. A hierarchical cluster analysis of second derivativespectraalsohighlightedthefactthatplasmaacquiredbeforeEGCGconsumptionpresented a distinct molecular profile after the 90 days of EGCG consumption. It was also possible by partial least squares regression discriminant analysis to correctly predict all unlabeled plasma samples (not used for model construction) at both timeframes. We observed that the similarity in composition among the plasma samples was higher in samples collected after EGCG consumption when compared with the samples taken prior to EGCG consumption. Diverse negative peaks of the normalized second derivative spectra, associated with lipid and protein regions, were significantly affected (p < 0.001) by EGCG consumption, according to the impact of EGCG consumption on the patients’ blood, low density and high density lipoproteins ratio. In conclusion, a single bolus dose of 225 mg of EGCG, ingested throughout a period of 90 days, drastically affected plasma molecular composition in all participants, which raises awareness regarding prolonged human exposure to EGCG. Because the analysis was conducted in a high-throughput, label-free, and economic analysis, it could be applied to high-dimension molecular epidemiological studies to further promote the understanding of the effect of bio-compound consumption mode and frequency.
- Comparison of analytical methods of serum untargeted metabolomicsPublication . Fonseca, Tiago AH; Araújo, Rúben; Von Rekowski, Cristiana; Justino, Gonçalo C.; Oliveira, Maria Da Conceiçao; Bento, Luís; Calado, CecíliaMetabolomics has emerged as a powerful tool in the discovery of new biomarkers for medical diagnosis and prognosis. However, there are numerous challenges, such as the methods used to characterize the system metabolome. In the present work, the comparison of two analytical platforms to acquire the serum metabolome of critically ill patients was conducted. The untargeted serum metabolome analysis by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) enabled to identify a set of metabolites statistically different between deceased and discharged patients. This set of metabolites also enabled to develop a very good predictive model, based on linear discriminant analysis (LDA) with a sensitivity and specificity of 80% and 100%, respectively. Fourier Transform Infrared (FTIR) spectroscopy was also applied in a high-throughput, simple and rapid mode to analyze the serum metabolome. Despite this technique not enabling the identification of metabolites, it allowed to identify molecular fingerprints associated to each patient group, while leading to a good predictive model, based on principal component analysis-LDA, with a sensitivity and specificity of 100% and 90%, respectively. Therefore, both analytical techniques presented complementary characteristics, that should be further explored for metabolome characterization and application as for biomarkers discovery for medical diagnosis and prognosis.
- The Impact of the Serum Extraction Protocol on Metabolomic Profiling Using UPLC-MS/MS and FTIR SpectroscopyPublication . Fonseca, Tiago AH; Von Rekowski, Cristiana; Araújo, Rúben; Oliveira, Maria Da Conceiçao; Justino, Gonçalo C.; Bento, Luís; Calado, CecíliaBiofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient’s survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.
- Simplifying data analysis in biomedical research: an automated, user-friendly toolPublication . Araújo, Rúben; Ramalhete, Luís; Viegas, Ana; Von Rekowski, Cristiana; Fonseca, Tiago AH; Calado, Cecília; Bento, LuísRobust data normalization and analysis are pivotal in biomedical research to ensure that observed differences in populations are directly attributable to the target variable, rather than dispari ties between control and study groups. ArsHive addresses this challenge using advanced algorithms to normalize populations (e.g., control and study groups) and perform statistical evaluations between demographic, clinical, and other variables within biomedical datasets, resulting in more balanced and unbiased analyses. The tool’s functionality extends to comprehensive data reporting, which elucidates the effects of data processing, while maintaining dataset integrity. Additionally, ArsHive is complemented by A.D.A. (Autonomous Digital Assistant), which employs OpenAI’s GPT-4 model to assist researchers with inquiries, enhancing the decision-making process. In this proof-of-concept study, we tested ArsHive on three different datasets derived from proprietary data, demonstrating its effectiveness in managing complex clinical and therapeutic information and highlighting its versatility for diverse research fields.
- Plasma versus serum analysis by FTIR spectroscopy to capture the human physiological statePublication . Araújo, Rúben; Ramalhete, Luis; Ribeiro, Edna; Calado, CecíliaFourier Transform InfraRed spectroscopy of serum and plasma has been highly explored for medical diagnosis, due to its general simplicity, and high sensitivity and specificity. To evaluate the plasma and serum molecular fingerprint, as obtained by FTIR spectroscopy, to acquire the system metabolic state, serum and plasma spectra were compared to characterize the metabolic state of 30 human volunteers, between 90 days consumption of green tea extract rich in Epigallocatechin 3-gallate (EGCG). Both plasma and serum spectra enabled the high impact of EGCG consumption on the biofluid spectra to be observed, as analyzed by the spectra principal component analysis, hierarchical-cluster analysis, and univariate data analysis. Plasma spectra resulted in the prediction of EGCG consumption with a slightly higher specificity, accuracy, and precision, also pointing to a higher number of significant spectral bands that were different between the 90 days period. Despite this, the lipid regions of the serum spectra were more affected by EGCG consumption than the corresponding plasma spectra. Therefore, in general, if no specific compound analysis is highlighted, plasma is in general the advised biofluid to capture by FTIR spectroscopy the general metabolic state. If the lipid content of the biofluid is relevant, serum spectra could present some advantages over plasma spectra.
- «
- 1 (current)
- 2
- 3
- »