Repository logo
 

Search Results

Now showing 1 - 10 of 14
  • Joining of fibre-reinforced thermoplastic polymer composites by friction stir welding—A review
    Publication . Pereira, Miguel A.R.; Galvão, Ivan; Costa, José D.; Amaro, A. M.; Leal, Rui
    The objective of the current work is to show the potential of the friction stir welding (FSW) and its variants to join fibre-reinforced thermoplastic polymer (FRTP) composites. To accomplish that, the FSW technique and two other important variants, the friction stir spot welding (FSSW) and the refill friction stir spot welding (RFSSW), are presented and explained in a brief but complete way. Since the joining of FRTP composites by FSSW has not yet been demonstrated, the literature review will be focused on the FSW and RFSSW techniques. In each review, the welding conditions and parameters studied by the different authors are presented and discussed, as well as the most important conclusions taken from them. About FSW, it can be concluded that the rotational speed and the welding speed have great influence on heat generation, mixture quality, and fibre fragmentation degree, while the tilt angle only has residual influence on the process. The reduction of internal and external defects can be achieved by adjusting axial force and plunge depth. Threaded or grooved conical pins achieved better results than other geometries. Stationary shoulder tools showed better performance than conventional tools. Regarding the RFSSW, it has not yet been possible to deepen conclusions about most of the welding parameters, but its feasibility is demonstrated.
  • Formation of intermetallic structures at the interface of steel-to-aluminium explosive welds
    Publication . Carvalho, Gustavo; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, A.
    The formation of intermetallic structures at the interface of carbon steel to 6082 aluminium alloy explosive welds and their influence on the weldability of these two materials were studied. The morphology, the microstructure, the chemical and phase compositions of the welds were characterised by several types of microscopy techniques. The interface characterisation proved that explosive mixtures with a lower detonation velocity were revealed as being more suitable for achieving consistent welds since jet entrapment was prevented and continuous molten layers were not formed at the weld interface. It was also found that the physical properties of the intermetallic phases generated at the weld interface have a strong influence on the weldability of steel-to-aluminium explosive welds. Specifically, it was shown that the formation of aluminium-rich intermetallic phases at the weld interface increases the solidification time of the interfacial molten material, decreasing the weldability of these two materials. The formation of these intermetallic compounds should be avoided by reducing the interaction between the flyer and the baseplate as well as by avoiding excessive molten layers.
  • Friction stir welding and explosive welding of aluminum/copper: process analysis
    Publication . Carvalho, G. H. S. F. L.; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    The 6082 aluminum alloy was welded to copper-DHP by friction stir welding and explosive welding. The effect of each welding process on the microstructural evolution, the intermetallic phases distribution, and the mechanical behavior of both types of welds was analyzed and compared. The microstructural changes proved to be much more expressive in friction stir welding due to the larger area under plastic deformation, the stirring and mixing of the alloys, the longer time under high temperature, and the longer interaction times between the base materials during welding. As explosive welding process is much faster, it avoids extensive microstructural changes and significant interaction of the materials, reducing the intermetallic volumes and their distribution along the interface. The friction stir welds presented Cu-rich intermetallics while the explosive welds presented Al-rich intermetallics. For alloys that can easily form brittle intermetallic phases, excessive interaction during the welding process leads to a very poor mechanical behavior of the joints.
  • Influence of base material properties on copper and aluminium-copper explosive welds
    Publication . Carvalho, Gustavo; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    The influence of base material properties on the interfacial phenomena in copper and aluminium-copper explosive welds was studied. Two explosive mixtures with different detonation velocities were tested. Sound aluminium-copper joints with effective bonding were achieved by using an explosive mixture with a lower detonation velocity. High energy explosives led to extensive interfacial melting, preventing the production of consistent dissimilar welds. Unlike to the similar copper joints, the aluminium-copper welds presented very asymmetrical interfacial waves, rich in intermetallic phases and displaying a curled morphology. The interaction of the materials in dissimilar welding was found to be completely different depending on the positioning of each alloy in the joint, i.e. positioned as the flyer or as the baseplate.
  • Weldability of aluminium-copper in explosive welding
    Publication . Carvalho, G. H. S. F. L.; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, Altino
    A large number of aluminium-copper explosive welds were produced under different welding conditions to perform a broad analysis of the weldability of this combination. The influence of the explosive mixture and the relative positioning of the plates on the welding results were analysed. When the aluminium alloy is positioned as the flyer plate, continuous interfacial melting occurred under the low values of energy lost by the collision, and collision point velocity. This proved that the weldability of the aluminium-copper combination is higher when the copper is positioned as the flyer. A mismatch between the experimental results and the existing theories that define the requirements for achieving consistent welds was noticed. Especially for welds produced using the aluminium alloy as the flyer, the experiments proved to be more restrictive than the theories. These theories, despite being widely applied in dissimilar welding literature, present several limitations concerning aluminium-copper welding. New approaches considering the formation of intermetallic phases at the interface, the properties of both welded metals, and/or the difference in their properties should be developed.
  • Effect of the flyer material on the interface phenomena in aluminium and copper explosive welds
    Publication . Carvalho, Gustavo; Mendes, R.; Leal, Rui; Galvão, Ivan; Loureiro, Altino
    The effect of physical and mechanical properties of three different flyers on the interface phenomena of partially overlapped explosive welds, using the same base plate material, was studied. Flyers of Copper Cu-DHP and aluminium alloy 6082 (tempers T6 and O) were welded to AA6082-T6 base plates. The morphology of the weld interface is strongly influenced by the physical and mechanical properties of the flyer. In the interface of the aluminium welds, the use of a flyer of lower hardness and yield strength than the base plate results in asymmetrical waves, with bigger amplitude and smaller wavelength than the weld series of similar temper, and higher mechanical properties. The copper-aluminium welds presented flat interfaces, mainly because of the significant differences in melting temperature and density between the copper flyer and the aluminium base plate. Considering these results and analysing several dissimilar welds carried out by other authors it was found that when the product of density and melting temperature ratios between the flyer and the base plate exceeds a certain value, there is no formation of waves at the interface of the metals. Furthermore, for the Cu-Al welds, the CuAl2 (theta) intermetallic phase was formed on the bond zone.
  • Explosive welding of aluminium to stainless steel
    Publication . Carvalho, Gustavo; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, A.
    Explosive welds of stainless steel and aluminium could only be achieved with the steel positioned as the baseplate. Using stainless steel as the flyer plate, the tensile stresses arrive at the interface before the complete solidification of the localised melting and no bonding is achieved. The poor weldability in this configuration is mainly related to the very low thermal conductivity of the flyer compared to the baseplate. The position of the materials significantly influences the weldability, and the ideal material for the flyer should have a higher melting temperature, specific heat and thermal conductivity, and a lower density compared to the baseplate. Some intermetallic formation is inevitable in dissimilar welds of combinations that can easily form intermetallic phases. The time-velocity diagram proved to be a reliable tool to analyse the weldability, especially when used in conjunction with the weldability window.
  • Recent developments in non-conventional welding of materials
    Publication . Leal, Rui; Galvão, Ivan
    Welding is one of the technological fields with the greatest impact in many industries, such as automotive, aerospace, energy production, electronics, the health sector, etc. Welding technologies are currently used to join the most diverse materials, from metallic alloys to polymers, composites, or even biological tissues. Despite the relevance and wide application of traditional welding technologies, these processes do not meet the demanding requirements of some industries. This has driven strong research efforts in non-conventional welding processes, such as laser welding, ultrasonic welding, impact welding, friction stir welding (FSW), diffusion welding, and many other welding technologies. Important studies have been recently developed all over the world on the application of these processes to the joining of cutting-edge materials and material combinations, enabling the production of joints with improved properties. Thus, this Special Issue presents a sample of the most recent developments in the non-conventional welding of materials, which will drive the design of future industrial solutions with increased efficiency and sustainability.
  • Influence of tool geometry and process parameters on torque, temperature, and quality of friction stir welds in dissimilar al alloys
    Publication . Manuel, Neves; Beltrão, Daniel; Galvão, Ivan; Leal, Rui; Costa, José D.; Loureiro, Altino
    In the current investigation, the influence of the tool geometry, the position of the materials in the joint, the welding speed on the temperature and torque developed, and on the quality of the welds in dissimilar and tri-dissimilar T joints were analysed. The aluminium alloys used were AA2017-T4, AA6082-T6, and AA5083-H111 and the friction stir welds were performed with identical shoulder tools, but with either a pin with simple geometry or a pin with progressive geometry. Progressive pin tools proved to be a viable alternative in the production of dissimilar and tri-dissimilar welds, as they provide a larger tool/material friction area and a larger volume of dragged material, which promotes an increase in the heat generated and a good mixing of the materials in the stir zone, although they require a higher torque. Placing a stronger material on the advancing side also results in a higher temperature in the stir zone but requires higher torque too. The combination of these factors showed that tools with a progressive pin provide sound dissimilar and tri-dissimilar welds, unlike single-pin tools. The increase in the welding speed causes the formation of defects in the stir zone, even in tri-dissimilar welds carried out with a tool with a progressive pin, which impairs the fatigue strength of the welds.
  • Microstructure and mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced with an aluminium interlayer
    Publication . Carvalho, G. H. S. F. L.; Galvão, Ivan; Mendes, R.; Leal, Rui; Loureiro, A.
    The influence of an interlayer on the microstructure and the mechanical behaviour of aluminium-carbon steel and aluminium-stainless steel clads produced by explosive welding was studied. Different series of welds were produced both with and without an aluminium interlayer, testing different welding parameters. The combination of aluminium to carbon steel presented a better weldability than aluminium to stainless steel. For both couples, low-velocity welds presented the best microstructure and mechanical strength. The mechanical tests showed that the aluminium to carbon steel joining did not benefit from the use of the interlayer. A joint with good interfacial morphology and excellent tensile-shear properties was achieved by low-velocity direct welding, with the fracture occurring outside the joining region. For the aluminium to stainless steel couple, the use of the interlayer increased its weldability. However, the mechanical strength of the joint is restricted by the low strength of the interlayer. The presence of intermetallic compounds at the weld interface, does not, by itself, promote the poor-quality of the explosive weld. The way the interface accommodates and distributes these intermetallics dictates the weld's quality.