Repository logo
 

Search Results

Now showing 1 - 10 of 22
  • Chaos analysis and explicit series solutions to the seasonally forced SIR epidemic model
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno; Rogovchenko, Svitlana; Rogovchenko, Yuriy
    Despite numerous studies of epidemiological systems, the role of seasonality in the recurrent epidemics is not entirely understood. During certain periods of the year incidence rates of a number of endemic infectious diseases may fluctuate dramatically. This influences the dynamics of mathematical models describing the spread of infection and often leads to chaotic oscillations. In this paper, we are concerned with a generalization of a classical Susceptible–Infected–Recovered epidemic model which accounts for seasonal effects. Combining numerical and analytic techniques, we gain new insights into the complex dynamics of a recurrent disease influenced by the seasonality. Computation of the Lyapunov spectrum allows us to identify different chaotic regimes, determine the fractal dimension and estimate the predictability of the appearance of attractors in the system. Applying the homotopy analysis method, we obtain series solutions to the original nonautonomous SIR model with a high level of accuracy and use these approximations to analyze the dynamics of the system. The efficiency of the method is guaranteed by the optimal choice of an auxiliary control parameter which ensures the rapid convergence of the series to the exact solution of the forced SIR epidemic model.
  • Scaling law in Saddle-node bifurcations for one-dimensional maps: a complex variable approach
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
    The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, tau, scales according to an inverse square-root power law, tau similar to (mu-mu (c) )(-1/2), as the bifurcation parameter mu, is driven further away from its critical value, mu (c) . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.
  • Complex Dynamics of defective interfering baculoviruses during serial passage in insect cells
    Publication . Zwart, Mark P.; Pijlman, Gorben P.; Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Elena, Santiago F.
    Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.
  • On chaos, transient chaos and ghosts in single populations models with allee effects
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
    Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
  • Homotopy analysis of explicit solutions in a chronic hepatitis C virus model
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno
    Mathematical analysis of nonlinear models in epidemiology has generated a deep interest in gaining insights into the mechanisms that underlie hepatitis C virus (HCV) infections. In this article, we provide a study of a chronic HCV infection model with immune response, incorporating the effect of dendritic cells (DC) and cytotoxic T lymphocytes (CTL). Considering very recent developments in the literature related to the Homotopy Analysis Method (HAM), we calculate the explicit series solutions of the HCV model, focusing our analysis on a particular set of dynamical variables. An optimal homotopy analysis approach is used to improve the computational efficiency of HAM by means of appropriate values for a convergence control parameter, which greatly accelerates the convergence of the series solutions. The approximated analytical solutions, with the variation of a parameter representing the expansion rate of CTL, are used to compute density plots, which allow us to discuss additional dynamical features of the model.
  • Rheology of the cytoskeleton as a fractal network
    Publication . Patricio, Pedro; R. Leal, Catarina; Duarte, Jorge; Januário, Cristina
    We model the cytoskeleton as a fractal network by identifying each segment with a simple Kelvin-Voigt element with a well defined equilibrium length. The final structure retains the elastic characteristics of a solid or a gel, which may support stress, without relaxing. By considering a very simple regular self-similar structure of segments in series and in parallel, in one, two, or three dimensions, we are able to express the viscoelasticity of the network as an effective generalized Kelvin-Voigt model with a power law spectrum of retardation times L similar to tau(alpha). We relate the parameter alpha with the fractal dimension of the gel. In some regimes ( 0 < alpha < 1), we recover the weak power law behaviors of the elastic and viscous moduli with the angular frequencies G' similar to G" similar to w(alpha) that occur in a variety of soft materials, including living cells. In other regimes, we find different power laws for G' and G".
  • Topological Complexity and Predictability in the Dynamics of a Tumor Growth Model with Shilnikov's Chaos
    Publication . Duarte, Jorge; Januário, Cristina; Rodrigues, Carla; Sardanyes, Josep
    Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
  • Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach
    Publication . Sardanyés, Josep; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Gil-Gómez, Gabriel; Duarte, Jorge
    In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems – the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a period-doubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression.
  • Topological entropy of catalytic sets: Hypercycles revisited
    Publication . Sardanyes, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno
    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
  • Measuring and Controlling the Chaotic Motion of Profits
    Publication . Januário, Cristina; Grácio, Clara; Mendes, Diana A.; Duarte, Jorge
    The study of economic systems has generated deep interest in exploring the complexity of chaotic motions in economy. Due to important developments in nonlinear dynamics, the last two decades have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The inability to predict the behavior of dynamical systems in the presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we study a specific economic model from the literature. More precisely, a system of three ordinary differential equations gather the variables of profits, reinvestments and financial flow of borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from the chaotic firm model can be controlled without changing its original properties and the dynamics can be turned into the desired attracting time periodic motion (a stable steady state or into a regular cycle). The orbit stabilization is illustrated by the application of a feedback control technique initially developed by Romeiras et al. [1992]. This work provides another illustration of how our understanding of economic models can be enhanced by the theoretical and numerical investigation of nonlinear dynamical systems modeled by ordinary differential equations.