Loading...
35 results
Search Results
Now showing 1 - 10 of 35
- Double-sided injection lap rivetingPublication . Pragana, João; Sampaio, Rui F. V.; Chantreuil, Justin; Bragança, Ivo; Silva, Carlos; Martins, PauloThis article presents a double-sided injection lap riveting process for fixing two overlapped sheets with tubular rivets at room temperature. The rivets are injected by compression into the dovetail ring holes that are previously machined in both sheets, and, in contrast to other joining by plastic deformation processes making use of auxiliary elements, the resulting joints are hidden inside the sheets without material protrusions above or below their surfaces. The new process is applied in the fabrication of aluminum busbar joints for energy distribution systems, and comparisons are made against conventional bolted joints that were fabricated for reference purposes. The work combines experimentation and finite element modelling, and results allow concluding that, in addition to invisibility and savings in assembly space, there are important gains in the thermo-electrical performance of the new joints that are of paramount importance for electric distribution applications.
- Revisiting the fracture forming limits of bulk forming under biaxial tensionPublication . Sampaio, Rui F. V.; Pragana, João; Bragança, Ivo; Silva, Carlos; Martins, PauloThe formability limits of bulk metal forming in principal strain space and in the effective strain vs. stress-triaxiality space are characterized by an uncertainty region in which cracks may be triggered by tension (mode I of fracture mechanics) or by out-of-plane shear (mode III). The problem in obtaining experimental data in this region has been known for a long time and the main objective of this paper is to present a new upset formability test geometry that can effectively contribute to the characterization of the formability limits of bulk metal forming parts subjected to biaxial tension. Alongside with this objective, this paper also presents an analytical expression for converting the fracture forming limit line corresponding to crack opening by mode III in principal strain space into a hyperbolic fracture limit curve in the effective strain vs. stress-triaxiality space. The overall methodology employed by the authors combines experimentation along with analytical and numerical modelling, and the contents of the paper is a step towards diminishing the actual lack of knowledge regarding failure by fracture in bulk metal forming parts subject to stress-triaxiality values beyond uniaxial tension. Results show that a new uncoupled ductile fracture criterion built upon combination of the integrands of the Cockcroft-Latham and McClintock criteria can be successfully used to model the physics of the bulk metal forming limits for the entire range of stress-triaxiality values corresponding to cracking on free surfaces.
- Integration of forming operations on hybrid additive manufacturing systems based on fusion weldingPublication . Pragana, João; Cristino, Valentino A. M.; Bragança, Ivo; Silva, Carlos; Martins, PauloThis paper is focused on the integration of metal forming operations in hybrid systems that combine additive manufacturing (AM) by gas metal wire arc and subtractive manufacturing by machining. The investigation is carried out in AISI 316L stainless steel wire and draws from tensile testing to incremental sheet forming of truncated conical shapes. Commercial sheets from the same material are utilized for comparison purposes. Thickness measurements, digital image correlation (DIC), circle grid analysis (CGA) and microstructural and scanning electron microscopy (SEM) observations are carried out to understand how different is the mechanical behaviour of the deposited metal from that of commercial metal sheets and how significant is the influence of the deposited metal microstructure on its overall formability. Results confirm that integration of metal forming operations in hybrid AM routes is feasible despite the formability of deposited metal being smaller than that of the commercial metal sheets due to the strong anisotropy induced by the dendritic based microstructure of the deposited metal. Incremental forming of two deposited parts also allows concluding that integration of metal forming operations in hybrid AM systems is a step towards green and sustainable manufacturing by extending their field of applicability to the fabrication of complex ready-to-use parts requiring combination of different processes.
- Influence of corrosion on the electrical and mechanical performance of hybrid busbarsPublication . Sampaio, Rui F. V.; Bragança, Ivo; Pragana, J. P. M; Silva, C. M. A.; Fernandes, João C. S.; Martins, Paulo A. F.This paper is focused on the electrical and mechanical performance of aluminum-copper hybrid busbars subjected to corrosion over time. Two different types of hybrid busbars with joints produced by conventional fastening with M8 hexagonal socket head bolt-nut pairs made from medium carbon steel and by a new injection lap riveting process with semi-tubular rivets made from the material of the softer conductor are used and subjected to salt spray and electrochemical tests. Electrical resistance measurements performed on hybrid busbars taken from the corrosion testing cabinet at the end of each exposure period allow concluding that the new injection lap riveted hybrid busbars have a better electrical performance over time due to the elimination of fasteners with a higher electrical resistivity than aluminum and copper and to the elimination of the aluminum-steel and copper-steel galvanic pairs. The capability of the injection lap riveted hybrid busbars to withstand shear forces after corrosion testing also revealed to be adequate and like those of the original (uncorroded) hybrid busbars.
- Joining by forming of additive manufactured 'mortise-and-tenon' jointsPublication . Silva, Diogo F. M.; Bragança, Ivo; Silva, Carlos; Alves, Luís; Martins, PauloThis article is aimed at extending the 'mortise-and-tenon' joining concept commonly utilized in corner or tee joints to lap joints in which one sheet is partially placed over another without any change in their shape. The approach makes use of wire arc additive manufacturing to fabricate the tenons and allows various shapes and thicknesses to be made from a wide range of metallic materials. Upset compression of the tenons is utilized to mechanically lock the two sheets being joined. Experimental and finite element simulation works performed with monolithic (aluminium-aluminium) and hybrid (aluminium-polymer) 'unit cells' consisting of a single lap joint are utilized to investigate the deformation mechanics and the feasibility of the new proposed joining process. Tensile-shear loading tests were carried out to determine the maximum force that the new proposed joints are capable to withstand without failure. Pull-out forces of approximately 8 and 6 kN for the monolithic and hybrid joints allow concluding on the potential of additive manufactured 'mortise-and-tenon' lap joints to connect sheets made from similar and dissimilar materials.
- On the performance and recyclability of a green composite based on AESO resinPublication . Seabra, Cláudio P.; Sousa, Ana Catarina; Bragança, Ivo; Silva, Carlos; Robalo, M. Paula; Loja, Amélia; Martins, PauloThe aims and objectives of this paper are two-fold: first to investigate the production of a green composite manufactured with renewable materials (i.e., jute fabric as reinforcement, acrylate epoxidase soybean oil (AESO) as matrix and sisal particles (SP) as filler), by the wet layup method; second, to propose a recycling procedure to recover the individual materials and reuse them in the production of a second-life composite. In the first part, di_erent combinations of SP (0, 5 and 10 wt%) and hardener (2, 5 and 10 wt%) were mixed with AESO resin, poured into a mould, cured and submitted to mechanical and physicochemical characterizations to identify the best conditions for the composite production. Virgin green composites with 10 wt% SP, 5 wt% hardener and 5 layers of jute fabric, capable of assuring 91 HA of hardness and 10.6 MPa of tensile strength, were fabricated. The second part describes the recycling process of the composites with acetone, an organic solvente recommended by the safety, health and environmental criteria, to breakdown the resin matrix and recover the jute fabric reinforcement and resin particles, which were then reused to fabricate a second-life composite. Although the hardness values of the second-life composite were smaller (4%) and the tensile strength varied with composition, the absorption of water was considerably reduced (in the range of 22 to 51%). This last result mitigates one of the green composite’s limitations and fosters circular economy by assuring the applications of the second-life composite in the field of transportations, packing and furniture, among others.
- A new joining by forming process to produce lap joints in metal sheetsPublication . Pragana, João; Silva, Carlos; Bragança, Ivo; Alves, Luís; Martins, PauloThis paper proposes a new joining by forming process to produce lap joints in metal sheets. The process combines partial cutting and bending with mechanical interlocking by sheet-bulk compression of tabs in the direction perpendicular to thickness. The lap joints are flat with all the plastically deforming material contained within the thickness of the two sheets partially placed over one another. The design of the lap joints is performed by a simple analytical model and the overall concept is validated by means of numerical modelling and experimentation. Destructive shear tests demonstrate the effectiveness and performance of the new proposed lap joints. (C) 2018 Published by Elsevier Ltd on behalf of CIRP.
- Two-stage joining of sheets perpendicular to one another by sheet-bulk formingPublication . Silva, Carlos; Bragança, Ivo; Alves, Luis; Martins, PauloThis paper proposes a new joining by forming process for fixing longitudinally in position two metal sheets (or plates) perpendicular to one another, at room temperature. The proposed process employs a counterbored variant of the ‘mortise-and-tenon’ joint that eliminates the protrusion of the tenon beyond the mortise after mechanical locking by plastic deformation. The presentation draws from the workability limits and material stress-strain characterization to validation by joining and destructive pull-out testing. Results demonstrate the effectiveness of the new proposed process for producing flat joint surfaces, which are advantageous over typical ‘mortise-and-tenon’ protruded surfaces in most applications.
- Resistance element welding of sandwich laminates with hidden insertsPublication . Calado, Francisco N.; Pragana, João; Bragança, Ivo; Silva, Carlos; Martins, Paulo A. F.This paper presents a new resistance element welding process capable of producing invisible lap joints between steel-polymer-steel composite laminates. The process involves pre-drilling a flat-bottom hole in each laminate to remove the polymer core and one of the steel sheets, and positioning a cylindrical insert inside the two adjoining holes for subsequent resistance welding. Finite element modeling is utilized to construct the weldability lobe and to identify the parameters that lead to the formation of acceptable joints. Experimental results confirm the applicability of the process to produce invisible lap joints without signs of material protrusions or local indentations resulting from squeezing the polymer out to create contact between the steel sheets. Destructive peel and shear tests allow determining the maximum forces that the joints can safely withstand and comparing their performance against alternative joined by forming lap joints in which the mechanical interlocking is also hidden inside the laminates.
- Formability limits in sheet-bulk formingPublication . Leonardo, Pedro N. C.; Magrinho, João P.; Bragança, Ivo; Silva, M. Beatriz; Silva, Carlos; Martins, P. A. F.This paper is focused on the characterization of the fracture limits in sheet-bulk forming. The approach extends to crack opening in mode III (out-of-plane shearing), a digital image correlation-based methodology for determining the fracture forming limits in mode I (tension) and mode II (in-plane shearing). For this purpose, a sheet lengthwise compression test with different end constraints is developed and utilized to obtain the strain loading paths up to fracture in mode III, for the first time directly from sheets. The three fracture forming limits of sheet-bulk forming are first characterized in principal strain space and then transformed into the space of effective strain vs. stress triaxiality by means of an analytical procedure based on anisotropic plastic deformation under proportional loading. A new uncoupled ductile damage criterion is introduced and successfully implemented in an in-house finite element computer program to predict the location where the out-of-plane shearing cracks are triggered. The overall results point out to the difficulty in merging the three different fracture forming limits into a single-branched fracture locus covering the plane stress deformation conditions and the three-dimensional states of stress that are likely to be found in sheet-bulk forming processes.