Repository logo
 

Search Results

Now showing 1 - 8 of 8
  • ndnIoT-FC: IoT devices as first-class traffic in name data networks
    Publication . Gameiro, Luís; Senna, Carlos; Luís, Miguel
    In recent years we have been assisting a radical change in the way devices are connected to the Internet. In this new scope, the traditional TCP/IP host-centric network fails in large-scale mobile wireless distributed environments, such as IoT scenarios, due to node mobility, dynamic topologies and intermittent connectivity, and the Information-Centric Networking (ICN) paradigm has been considered the most promising candidate to overcome the drawbacks of host-centric architectures. Despite bringing efficient solutions for content distribution, the basic ICN operating principle, where content must always be associated with an interest, has serious restrictions in IoT environments in relation to scale, performance, and naming, among others. To address such drawbacks, we are presenting ndnIoT-FC, an NDN-based architecture that respects the ICN rules but offers special treatment for IoT traffic. It combines efficient hybrid naming with strategies to minimize the number of interests and uses caching strategies that virtually eliminates copies of IoT data from intermediate nodes. The ndnIoT-FC makes available new NDN-based application-to-application protocol to implement a signature model operation and tools to manage its life cycle, following a publisher-subscriber scheme. To demonstrate the versatility of the proposed architecture, we show the results of the efficient gathering of environmental information in a simulation environment considering different and distinct use cases.
  • Evaluation of content dissemination strategies in urban vehicular networks
    Publication . Pessoa, Gonçalo; Guardalben, Lucas; Luís, Miguel; Senna, Carlos; Sargento, Susana
    The main drivers for the continuous development of Vehicularad-hoc Networks (VANETs) are safety applications and services. However, in recent years, new interests have emerged regarding the introduction of new applications and services for non-urgent content (e.g., videos, ads, sensing and touristic information) dissemination. However, there is a lack of real studies considering content dissemination strategies to understand when and to whom the content should be disseminated using real vehicular traces gathered from real vehicular networks. This work presents a realistic study of strategies for dissemination of non-urgent contente with the main goal of improving contente delivery as well as minimizing network congestion and resource usage. First, we perform an exhaustive network characterization. Then, several content strategies are specified and evaluated in different scenarios (city center and parking lot). All the obtained results show that there are two content distribution strategies that clearly set themselves apart due to their superior performance: Local Rarest Bundle First and Local Rarest Generation First.
  • EmuCD: an emulator for content dissemination protocols in vehicular networks
    Publication . Chaves, Ricardo; Senna, Carlos; Luís, Miguel; Sargento, Susana; Moreira, André; Recharte, Diogo; Matos, Ricardo
    The development of protocols for mobile networks, especially for vehicular ad-hoc networks (VANETs), presents great challenges in terms of testing in real conditions. Using a production network for testing communication protocols may not be feasible, and the use of small networks does not meet the requirements for mobility and scale found in real networks. The alternative is to use simulators and emulators, but vehicular network simulators do not meet all the requirements for effective testing. Aspects closely linked to the behaviour of the network nodes (mobility, radio communication capabilities, etc.) are particularly important in mobile networks, where a delay tolerance capability is desired. This paper proposes a distributed emulator, EmuCD, where each network node is built in a container that consumes a data trace that defines the node's mobility and connectivity in a real network (but also allowing the use of data from simulated networks). The emulated nodes interact directly with the container's operating system, updating the network conditions at each step of the emulation. In this way, our emulator allows the development and testing of protocols, without any relation to the emulator, whose code is directly portable to any hardware without requiring changes or customizations. Using the facilities of our emulator, we tested InterPlanetary File System (IPFS), Sprinkler and BitTorrent content dissemination protocols with real mobility and connectivity data from a real vehicular network. The tests with a real VANET and with the emulator have shown that, under similar conditions, EmuCD performs closely to the real VANET, only lacking in the finer details that are extremely hard to emulate, such as varying loads in the hardware.
  • Context-based forwarding for mobile ICNs
    Publication . Gameiro, Luís; Senna, Carlos; Luís, Miguel
    Over the last couple of decades, mobile ad-hoc networks (MANETs) have been at the forefront of research, yet still are afflicted by high network fragmentation, due to their continuous node mobility and geographical dispersion. To address these concerns, a new paradigm was proposed, Information-Centric Networks (ICN), whose focus is the delivery of Content based on names. This article aims to use ICN concepts towards the delivery of both urgent and non-urgent information in urban mobile environments. In order to do so, a context-based forwarding strategy was proposed, with a very clear goal: to take advantage of both packet Names and Data, and node's neighbourhood analysis in order to successfully deliver content into the network in the shortest period of time, and without worsening network congestion. The design, implementation and validation of the proposed strategy was performed using the ndnSIM platform along with real mobility traces from communication infrastructure of the Porto city. The results show that the proposed context-based forwarding strategy presents a clear improvement regarding the Data resolution, while maintaining network overhead at a constant.
  • When backscatter communication meets vehicular networks: boosting crosswalk awareness
    Publication . Pereira, Felisberto; Sampaio, Hugo; Chaves, Ricardo; Correia, Ricardo; Luís, Miguel; Sargento, Susana; Jordão, Marina; Almeida, Luís; Senna, Carlos; Oliveira, Arnaldo S. R.; Carvalho, Nuno Borges
    The research of safety applications in vehicular networks has been a popular research topic in an effort to reduce the number of road victims. Advances on vehicular communications are facilitating information sharing through real time communications, critical for the development of driving assistance systems. However, the communication by itself is not enough to reach the most desired target as we need to know which safety-related information should be disseminated. In this work, we bring passive sensors and backscatter communication to the vehicular network world. The idea is to increase the driver (or vehicle) awareness regarding the presence of pedestrians in a crosswalk. Passive sensors and backscatter communication technologies are used for the pedestrians’ detection phase, while the vehicular network is used during the dissemination of the detection information to surrounding vehicles. The proposed solution was validated through end-to-end experimentation, with real hardware and in a real crosswalk with real pedestrians and vehicles, demonstrating its applicability.
  • Handling producer and consumer mobility in IoT publish-subscribe named data networks
    Publication . Caldeira Hernandez, Diego; Gameiro, Luís; Senna, Carlos; Luís, Miguel; Sargento, Susana
    In recent years, the Internet of Things (IoT) has become a standard facet of modern communications, and information-centric networks have been pointed as an alternative to bypass the restrictions imposed by the traditional Internet protocol networks regarding the mobility of its network elements. However, the improvements imposed by this new paradigm fall short in large scale mobile wireless distributed environments inherent to IoT, due to high node mobility, dynamic topologies and intermittent connectivity. To tackle these issues, we present a named data network (NDN)-based publish-subscribe mechanism with support for both Consumer and Producer mobility. This approach handles the Producer mobility by combining the Data packets with infrastructure specific information, fixing the broken paths between the Producer and the Consumer; and the Consumer mobility by monitoring and anticipating mobile node trajectories while compelling the infrastructure to adjust to new paths. Simulation results, assuming a smart city use case and using real traces of vehicular mobility, have shown that the proposed solution far surpasses the native NDN workflow and traditional publish-subscribe solutions. With respect to the Producer mobility, the proposed solution delivers 79% of Data packets against 14% with the Native implementation, when using 25 mobile Producers; regarding the Consumer mobility, results have shown that our solution achieves almost the same Consumer satisfaction ratio as previous implementations but reducing substantially the network overhead related with the transmission of Interest packets.
  • Forwarding in energy-constrained wireless information centric networks
    Publication . Marques, Daniel; Senna, Carlos; Luís, Miguel
    Information Centric Networks (ICNs) have been considered one of the most promising candidates to overcome the disadvantages of host-centric architectures when applied to IoT networks, having the potential to address the challenges of a smart city. One of the foundations of a smart city is its sensory capacity, which is obtained through devices associated with the IoT concept. The more sensors spread out, the greater the ability to sense the city. However, such a scale demands high energy requirements and an effective improvement in the energy management is unavoidable. To improve the energy management, we are proposing an efficient forwarding scheme in energy-constrained wireless ICNs. To achieve this goal, we consider the type of devices, their internal energy and the network context, among other parameters. The proposed forwarding strategy extends and adapts concepts of ICNs, by means of packet domain analysis, neighbourhood evaluation and node sleeping and waking strategies. The proposed solution takes advantage of the neighbourhood to be aware of the moments to listen and forward packets in order to consistently address mobility, improving the quality of content delivery. The evaluation is performed by simulation with real datasets of urban mobility, one from the lagoon of “Ria de Aveiro” and the other from a vehicular network in the city of Porto. The results show that the proposed forwarding scheme resulted in significant improvements in network content availability, in the overall energy saving and, consequently, in the network lifetime.
  • Insights from the experimentation of Named Data Networks in mobile wireless environments
    Publication . Gameiro, Luís; Senna, Carlos; Luís, Miguel
    The Information-Centric Network (ICN) paradigm has been touted as one of the candidates for the Internet of the future, where the Named Data Network (NDN) architecture is the one leading the way. Despite the large amount of works published in the literature targeting new implementations of such architecture, covering different network topologies and use cases, there are few NDN implementations in real networks. Moreover, most of these real-world NDN implementations, especially those addressing wireless and wired communication channels, are at a small scale, in laboratory environments. In this work, we evaluate the performance of an NDN-based implementation in a mobile wireless network, as part of a smart city infrastructure, making use of multiple wireless interfaces. We start by showing how we have implemented the NDN stack in current network nodes of the smart city infrastructure, following a hybrid solution where both TCP/IP and NDN paradigms can coexist. The implementation is evaluated in three scenarios, targeting different situations: mobility, the simultaneous use of different wireless interfaces and the network characteristics. The results show that our implementation works properly and insights about the correct NDN parameterization are derived.