Repository logo
 

ISEL - Eng. Mecan. - Artigos

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 10 of 348
  • Color evaluation of pre-shaded monolithic zirconia restorations on different substrates and resin cements
    Publication . Fonseca, Vanessa; Neves, Cristina Bettencourt; Portugal, Jaime; Anes, Vitor; Chasqueira, Filipa; Roque, Joao Carlos
    This study evaluated if the material, the substrate, and the cement have no influence on the color of pre-shaded monolithic zirconia crowns. The specific effect of the cement over each substrate/brand group was also studied. Two commercial brands of zirconia, Amann Girrbach (AG) and Zirkonzahn (ZZ), were used to produce crowns that were placed over three substrates (natural tooth, zirconia, metal) using two different resin cements (Ivoclar AG (Shaan, Liechtenstein) Neutral and Light) or glycerol (as the control) (n = 10). Lightness (L*), chroma (C*), hue (h*), and color difference (ΔE) of each crown were measured using a VITA Easyshade V® spectrophotometer (VITA Zahnfabrik, Bad Säckingen, Germany), following the standardized reference. Since normality was not verified by the Shapiro–Wilk test, data were statistically analyzed using the Kruskal–Wallis test for group comparisons and Tukey’s post-hoc test for multifactorial variance analysis (α = 0.05). ΔE medians ranged between 1.3 in the AG/zirconia substrate/glycerol group and 8.0 in the ZZ/metal substrate/light cement group. In general, lower values of ΔE were recorded in AG restorations compared to ZZ (p < 0.05), zirconia, and natural tooth substrates compared to metal (p < 0.001) and neutral compared to light cements (p < 0.05). Specifically, over the metal substrate, AG crowns with neutral cement and ZZ crowns with neutral cement and glycerol showed lower ΔE values (p < 0.05). Over the zirconia substrate, light cement presented higher ΔE values than glycerol in both brands but similar to neutral cement. Over the natural tooth, no significant differences were observed between cements (p > 0.05) in the AG brand, while in the ZZ group, light cement showed higher ΔE values (p < 0.05). The final color of the restorations was significantly influenced by the zirconia brand, substrate type, and resin cement. Light cement led to greater color variations, particularly in ZZ restorations. These findings highlight the importance of material selection in achieving esthetically pleasing zirconia restorations.
  • Energy production from landfill gas: short-term management
    Publication . Domingues, Nuno Soares
    An increasing lack of raw materials, resource depletion, environmental impacts and other concerns have changed the way the population faces garbage disposal and municipalities implement waste management strategies. The aggravated global rise in municipal solid waste (MSW) generation has led to a new stage in full development, with objectives and targets set by the European Union regarding reducing the production of MSW. The targets also include the increasing selective collection, reuse, recycling and recovery (organic and energetic) of the waste produced. At the same time, the European Union has also set caps for the greenhouse gas emissions and for increasing the use of alternative renewable energy sources. In this context, one of the sources of renewable energy that is beginning to be used to produce electricity in our country is biogas. Finally, AD promotes the development of a circular economy. The present study introduces the formalism for a computer application that simulates the technical-economic behaviour of the short-term management of biogas for the conversion of electricity, and the mathematical model is formulated as a mathematical programming problem with constraints. A simulation for a case study of short-term management is given using the real landfill data available. The case study proves the ability of the LandGEM, despite some authors' support that the Tabasaran-Rettenberger model provided a more reliable estimate, especially when compared to actual landfill data. The present paper is a contribution to the optimisation of the management of electricity from the use of biogas, namely the second phase of the Strategic Plan for Urban Waste. In addition to complying with the legislation in force, the use of biogas to produce electricity is an added value for the concessionaires of waste treatment and final destination units, as this alternative energy source can provide not only self-sufficiency in electricity for these units but also the export of surplus energy to the National Electricity Grid, thus contributing to the self-sustaining management and energy flexibility that is intended for these infrastructures.
  • Natural gas–hydrogen blends to power: equipment adaptation and experimental study
    Publication . Valente, Ruben; Costa, Jorge M.; Soares Domingues, Nuno Alexandre
    An experimental study was devised to assess the technical, environmental, and economic impact of incorporating hydrogen into natural gas. The experimental tests were conducted on a GUNT ET 792 demonstration unit, characterized by operating on a gas cycle in a twin-shaft configuration. The equipment was adapted to accommodate natural gas and mixtures of natural gas with hydrogen in volumetric fractions of 5%, 10%, and 20%. The tests carried out ensured the viability of using these mixtures from a safety perspective. On the other hand, it was possible to evaluate the main differences in the use of these fuel gases in terms of the temperatures and pressures that characterize the main points of the gas cycle, fuel injection pressures, air/fuel ratios, excess air, power output, overall cycle efficiencies, NOX and CO2 emissions, and operational cost.
  • Study of additive manufacturing intrinsic defects on fatigue life of Ti-6Al-4V †
    Publication . Ribeiro Cardoso Martins Morgado, Teresa Leonor; Alves, João; Pereira, António; Pereira, Manuel; Martins, Rui F.
    The present work presents a new approach to studying the structural integrity of a Ti-6Al-4V alloy obtained by Selective Laser Melting (SLM). This approach is based on the intrinsic addictive manufacturing defects analysis obtained by nanotomography, the experimental S-N curve, and the small crack growth Murakami and Endo model. Also, two counting methods of 3D manufacturing intrinsic defects were considered. The simulation of S-N curves and the small crack propagation curves were successfully obtained. New models for predicted fatigue limit were developed, one using the (3D) variable area of the defects observed as the total area and the other using the total project area. The 3D total surface area counting method presents more conservative values on crack propagation studies, so it is recommended for integrity studies of Ti6Al4V alloy obtained by SLM.
  • Assessment of influential operational parameters in the mitigation of CO2 emissions in a power plant: case study in Portugal
    Publication . Balanuta, Vítor; Baptista, Patricia; Neves da Fonseca Cardoso Carreira, Fernando Paulo; Duarte, Gonçalo; Casaca, Cláudia Sofia Séneca da Luz
    The European decarbonization goals and requirement for energy independence are mostly relying on intermittent renewable energy sources for electrification. A numerical model was developed to simulate the operation of a steam generator, allowing a study of the potential impacts of retrofitting existing coal-fired power plants to operate with biomass or coal–biomass mixtures on combustion parameters and CO2 emissions. The results obtained using the operational parameters of the Sines power plant indicate that a mixture of 25% coal and 75% pine sawdust allow operation at λ = 1.8, demonstrating that a small amount of coal allows operation near the coal combustion parameters (λ = 1.9). These conditions have the drawback of a reduction of 8.7% in adiabatic flame temperature but a significant reduction of 57.5% in CO2 emissions, considering the biomass as carbon-neutral.
  • Design, control, and testing of a multifunctional soft robotic Gripper
    Publication . Correia, A.; Charters De Azevedo, Tiago; Leite, Afonso; Campos, Francisco M.; Monge, Nuno; Rocha, André; Mendes, Mário J. G. C.
    This paper proposes a multifunctional soft robotic gripper for a Dobot robot to handle sensitive products. The gripper is based on pneumatic network (PneuNet) bending actuators. In this study, two different models of PneuNet actuators have been studied, designed, simulated, experimentally tested, and validated using two different techniques (3D printing and molding) and three different materials: FilaFlex 60A (3D-printed), Elastosil M4601, and Dragonskin Fast 10 silicones (with molds). A new soft gripper design for the Dobot robot is presented, and a new design/production approach with molds is proposed to obtain the gripper’s PneuNet multifunctional actuators. It also describes a new control approach that is used to control the PneuNet actuators and gripper function, using compressed air generated by a small compressor/air pump, a pressure sensor, a mini valve, etc., and executing on a low-cost controller board—Arduino UNO. This paper presents the main simulation and experimental results of this research study.
  • Efect of Tool Rotational Speed on Microstructure and Mechanical Properties of Friction Stir Welded Al–16Si–4Cu–10SiC Composite/ Al–4Cu–Mg Alloy Joints
    Publication . Aval, Hamed Jamshidi; Galvão, Ivan
    This study investigates the effects of different rotational speeds on the friction stir welding process of two distinct materials: an Al-16Si-4Cu-10SiC composite and an Al-4Cu-Mg alloy. The research primarily concentrates on the microstructure, mechanical properties, and corrosion resistance of the welded materials. The findings reveal that surface grooves and tunnel defects emerge at heat inputs of 1296 and 3024 J/mm, respectively. When the rotation speed decreases from 1200 to 800 rpm, the Zener parameter increases from 12.45 x 1013 to 14.78 x 1014, and the average grain size after recrystallization reduces from 3.7 +/- 0.3 to 2.1 +/- 0.4 mu m. The welding process results in the formation of theta-Al2Cu and S-Al2CuMg precipitates in the stir zones of the Al-16Si-4Cu-10SiC composite and Al-4Cu-Mg alloy, respectively. A reduction in rotational speed from 1200 to 800 rpm leads to hardness, ultimate tensile strength, and corrosion resistance values of 149.8 +/- 10.1 HV, 401.4 +/- 8.1 MPa, and 0.39 mm/year, respectively.
  • Stress-Based Model for Calculating the Opening Angle of Notch Cracks in a Magnesium Alloy under Multiaxial Fatigue
    Publication . Videira, Henrique; Anes, Vitor; Reis, Luís
    This paper presents a model to calculate the opening angle of crack initiation in notched fractures subjected to multiaxial loading. To validate the proposed model, a study was performed on polished AZ31B-F magnesium alloy specimens under multiaxial high-cycle fatigue loading. The specimens exhibited a notch in the smaller cross-sectional area, which was created with a special drilling jig to promote the formation of fatigue cracks in this localized area of the specimen. The load paths used in the experiments and numerical analyses were proportional and non-proportional, resulting in different stress states in the crack front opening, which were determined by finite element analysis to validate the proposed model. To obtain more accurate numerical results for these estimates, these finite element analyses were performed using the nonlinear Chaboche plasticity model of ABAQUS (R) 2021 software. A sensitivity analysis was also performed to determine which load component-axial or torsional-has a greater influence on the fatigue strength and contributes significantly to the crack opening process. The results show that the type of load path and the stress level of each load component-axial and torsional-has a strong influence on the opening angle of the notch crack and the fatigue lifetime of the specimen. This result is confirmed not only by the experimentally determined fatigue strength, but also by a fractographic analysis performed on the surface of the specimens for both load paths. Moreover, the results show an acceptable correlation between the experimental results and the estimates obtained with the proposed model and the stresses obtained with the finite element analysis.
  • Mechanical and thermal processing of wire-arc additively deposited stainless steel
    Publication . Silva, Carlos; Pragana, João; Bragança, Ivo; Martins, Paulo
    Mechanical and thermal processing of wire-arc additively deposited stainless steel is investigated with the purpose of improving its microstructure, surface morphology, formability, and stress response. Microscopy helps identifying the processing conditions that permit full recrystallization of the as-built columnar microstructure. Combination with strain loading paths, topography and fractography in tensile tests show that mechanical processing consisting of 20 % thickness reduction followed by annealing at 1100 °C under 4 h eliminates anisotropy and increases the fracture forming limits by 30 %. The work is a step forward to consolidate the hybridization of wire-arc additive manufacturing with metal forming as an alternative to conventional manufacturing.
  • On the Enhancement of Material Formability in Hybrid Wire Arc Additive Manufacturing
    Publication . Pragana, João; Brito, Beatriz; Bragança, Ivo; Silva, Carlos; Martins, Paulo
    This paper is focused on improving material formability in hybrid wire-arc additive manufacturing comprising metal forming stages to produce small-to-medium batches of customized parts. The methodology involves fabricating wire arc additive manufactured AISI 316L stainless steel parts subjected to mechanical and thermal processing (MTP), followed by microhardness measurements, tensile testing with digital image correlation, as well as microstructure and microscopic observations. Results show that mechanical processing by pre-straining followed by thermal processing by annealing can reduce material hardness and strength, increase ductility, and eliminate anisotropy by recrystallizing the as-built dendritic-based columnar grain microstructure into an equiaxed grain microstructure.