Repository logo
 

Search Results

Now showing 1 - 10 of 27
  • Direct Color Sensor, Optical Amplifier and Demux Device Integrated on a Single Monolithic SiC Photodetector
    Publication . Vieira, Manuela; Louro, Paula; Vieira, Manuel; Costa, João; Fernandes, Miguel
    A pi'n/pin a-SiC:H voltage and optical bias controlled device is presented and its behavior as image and color sensor, optical amplifier and demux device is discussed. The design and the light source properties are correlated with the sensor output characteristics. Different readout techniques are used. When a low power monochromatic scanner readout the generated carriers the transducer recognizes a color pattern projected on it acting as a direct color and image sensor. Scan speeds up to 10(4) lines per second are achieved without degradation in the resolution. If the photocurrent generated by different monochromatic pulsed channels is readout directly, the information is demultiplexed. Results show that it is possible to decode the information from three simultaneous color channels without bit errors at bit rates per channel higher than 4000 bps. Finally, when triggered by light of appropriated wavelength, it can amplify or suppress the generated photocurrent working as an optical amplifier (C) 2009 Published by Elsevier Ltd.
  • Laser-scanned p-i-n photodiode (LSP) for image detection
    Publication . Vieira, Manuela; Fernandes, Miguel; Martins, João; Louro, Paula; Maçarico, António Filipe Ruas Trindade; Schwarz, Reinhard; Schubert, Markus B.
    Amorphous and microcrystalline glass/ZnO:Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1 C :H)/Al imagers with different n-layer resistivities were produced by plasma-enhanced chemical vapor deposition technique (PE-CVD). The transducer is a simple, large area p-i-n photodiode; an image projected onto the sensing element leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The effect of the image intensity on the sensor output characteristics (sensitivity, linearity, blooming, resolution, and signal-tonoise ratio) are analyzed for different material composition. The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity and on the spatial resolution is achieved with a responsivity of 0.2 mW/cm2 by decreasing the -layer conductivity by the same amount. In a 4 4 cm2 laser-scanned photodiode (LSP) sensor, the resolution was less than 100 m and the signal-to-noise (S/N) ratio was about 32 dB. Aphysical model supported by electrical simulation gives insight into the methodology used for image representation.
  • Indoor positioning and intuitive advertising using visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper researches the applicability of an intuitive advertising system for large indoor environments using Visible Light Communication (VLC). This VLC based positioning system includes the use of the visible light signal to light the space and to transmit the information for travelers’ positioning and of advertising campaigns in the surroundings. White RGB-LEDs, whose original function is providing illumination, are used as transmitters due to the ability of each individual chip to switch quickly enough to transfer data. This functionality is used for communication where the multiplexed data can be encoded in the emitting light. The light signals emitted by the LEDs positioned in the area of the advertising campaign are interpreted directly by the customers’ receivers. A SiC optical sensor with light filtering and demultiplexing properties receives the modulated signals containing the ID and the geographical position of the LED and other information, demultiplexes and decodes the data and locates the mobile device in the environment. Different layouts are analysed: square and hexagonal meshes are tested, and a 2D localization design, demonstrated by a prototype implementation, is presented. The key differences between both topologies are discussed. For both, the transmitted information, indoor position and motion direction of the customer are determined. The results showed that the LED-aided VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction as a function of time and to interact with information received.
  • Stacked photo-sensing devices based on SiC alloys A non-pixelled architecture for imagers and demultiplexing devices
    Publication . Vieira, Manuela; Louro, Paula; Fernandes, Miguel; Fantoni, Alessandro; Vieira, Manuel Augusto; Costa, João
    In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
  • Indoor wayfinding using visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    Optical wireless communication has been widely studied during the last years in short-range applications. This paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include finding places, like a particular shop or office, guiding users across different floors, through elevators and stairs. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetector with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered within the overlap discs of each cells underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the Aps is evaluated and a model for the different cellular networks is analyzed. Orthogonal topologies are tested, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. Buddy wayfinding services are also implemented. The results showed that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and to optimize the route towards a static or dynamic destination.
  • Wayfinding services in crowded buildings through visible light
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
  • Geolocation and communication in unfamiliar indoor environments through visible light
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    To support people’s wayfinding activities in unfamiliar indoor environments, a method able to generate ceiling landmark route instructions using Visible Light Communication (VLC) is proposed. The system is composed of several transmitters (ceiling luminaries) which send the map information and path messages required to wayfinding. Mobile optical receivers, using joint transmission, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Bidirectional communication between the emitters and the receivers is available in strategic optical access point. Typical scenarios are simulated and include finding places and guiding users across different floors. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used, providing a different data channel for each chip. At the receiver, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetectors with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located. The coded light signals are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the APs is evaluated and a model for the different cellular networks is analyzed. Orthogonal and hexagonal topologies are tested, and a 3D localization design, demonstrated by a prototype is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. The results show that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and optimize the route towards a static or dynamic destination.
  • Dynamic VLC navigation system in crowded buildings
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
  • Indoor self-localization and wayfinding services using visible light communication: a model
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Rodrigues, João; Vieira, Pedro
    Visible Light Communication (VLC) is a promising technology that can jointly be used to accomplish the typical lighting functionalities of the Light-Emitting Diodes (LEDs) and data transmission, where light intensity can be modulated on a high rate that cannot be noticed by the human eye. A VLC cooperative system that supports guidance services and uses an edge/fog based architecture for wayfinding services is presented. The dynamic navigation system is composed of several transmitters (luminaries) which send the map information and path messages required to wayfinding. Each luminaire for downlink transmission is equipped with one two type of controllers: mesh controller and cellular controllers to forward messages to other devices in the vicinity or to the central manager services. Data from the luminaires is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources, located in ceiling landmarks, are used providing a different data channel for each chip. Mobile optical receivers, collect the data, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Uplink transmission is implemented and the best route to navigate through venue calculated. The results show that the system allows determining the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received optimizing the route towards the destination.
  • Optoelectronic digital capture device based on Si/C multilayer heterostructures
    Publication . Vaz da Silva, V; Vieira, Manuel Augusto; Louro, Paula; Vieira, Manuela; Barata, Manuel
    Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.