Repository logo
 
No Thumbnail Available
Publication

Geolocation and communication in unfamiliar indoor environments through visible light

Use this identifier to reference this record.
Name:Description:Size:Format: 
Geolocation_MVieira.pdf1.95 MBAdobe PDF Download

Advisor(s)

Abstract(s)

To support people’s wayfinding activities in unfamiliar indoor environments, a method able to generate ceiling landmark route instructions using Visible Light Communication (VLC) is proposed. The system is composed of several transmitters (ceiling luminaries) which send the map information and path messages required to wayfinding. Mobile optical receivers, using joint transmission, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Bidirectional communication between the emitters and the receivers is available in strategic optical access point. Typical scenarios are simulated and include finding places and guiding users across different floors. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used, providing a different data channel for each chip. At the receiver, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetectors with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located. The coded light signals are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the APs is evaluated and a model for the different cellular networks is analyzed. Orthogonal and hexagonal topologies are tested, and a 3D localization design, demonstrated by a prototype is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. The results show that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and optimize the route towards a static or dynamic destination.

Description

Este trabalho foi financiado pelo Concurso Anual para Projetos de Investigação, Desenvolvimento, Inovação e Criação Artística (IDI&CA) 2020 do Instituto Politécnico de Lisboa. Código de referência IPL/2020/GEO-LOC/ISEL

Keywords

Visible light communication Geolocation Indoor navigation Bidirectional communication Wayfinding Optical sensors Indoor multi-level environments Transmitter/Receiver Multiplexing/Demultiplexing

Citation

VIEIRA, Manuela; [et al] – Geolocation and communication in unfamiliar indoor environments through visible light. In Proc. SPIE 11706 – Light-Emitting Devices, Materials, and Applications XXV. Vol. 11706, (2021), pp. 117060P-1- 117060P-11

Research Projects

Organizational Units

Journal Issue

Publisher

SPIE OPTO

CC License

Altmetrics