Repository logo
 

Search Results

Now showing 1 - 7 of 7
  • Hyperspectral compressive sensing - a low power consumption approach
    Publication . Nascimento, Jose; Véstias, Mário; Duarte, Rui
    Hyperspectral imaging instruments allow data collection in hundreds of spectral bands for the same area on the surface of the Earth. The resulting multidimensional data cube typically comprises several GBs per light. Due to the extremely large volumes of data collected by imaging spectrometers, hyperspectral data compression, dimensionality reduction and Compressive Sensing (CS) techniques has received considerable interest in recent years. These data are usually acquired by a satellite or an airbone instrument and sent to a ground station on Earth for subsequent processing. Usually the bandwidth connection between the satellite/airborne platform and the ground station is reduced, which limits the amount of data that can be transmitted. As a result, there is a clear need for (either lossless or lossy) hyperspectral data compression techniques that can be applied on-board the imaging instrument. This paper, presents a study of the power and time consumption and accuracy of a parallel implementation for a spectral compressive acquisition method on a Jetson TX2 platform, which is well suited to perform vector operations such as dot products. This implementation exploits the architecture at low level, using shared memory and coalesced accesses to memory. The conducted experiments have been performed to demonstrate the applicability, in terms of accuracy, time consuming and power consumption of these methods for onboard processing. The results show that by using this low power consumption GPU is it possible to obtain real-time performance with a very limited power requirement.
  • System-on-chip field-programmable gate array design for onboard real-time hyperspectral unmixing
    Publication . Nascimento, Jose; Véstias, Mário
    Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.
  • FPGA-based architecture for hyperspectral endmember extraction
    Publication . Rosário, João; Nascimento, Jose; Véstias, Mário
    Hyperspectral instruments have been incorporated in satellite missions, providing data of high spectral resolution of the Earth. This data can be used in remote sensing applications, such as, target detection, hazard prevention, and monitoring oil spills, among others. In most of these applications, one of the requirements of paramount importance is the ability to give real-time or near real-time response. Recently, onboard processing systems have emerged, in order to overcome the huge amount of data to transfer from the satellite to the ground station, and thus, avoiding delays between hyperspectral image acquisition and its interpretation. For this purpose, compact reconfigurable hardware modules, such as field programmable gate arrays (FPGAs) are widely used. This paper proposes a parallel FPGA-based architecture for endmember’s signature extraction. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data sets collected by the NASA’s Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems, opening new perspectives for onboard hyperspectral image processing.
  • FPGA-based architecture for hyperspectral unmixing
    Publication . Nascimento, Jose; Véstias, Mário; Martin, Gabriel
    This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.
  • Hyperspectral compressive sensing: a comparison of embedded GPU and ARM implementations
    Publication . Nascimento, Jose; Véstias, Mário
    Hyperspectral imaging involves the sensing of a large amount of spatial information across several adjacent wavelengths. Typically, hyperspectral images can be represented by a three-dimensional data cube. The collected data cube is extremely large to be transmitted from the satellite/airborne platform to the ground station. Compressive sensing (CS) is an emerging technique that acquire directly the compressed signal instead of acquiring the full data set. This reduces the amount of data that needs to be measured, transmitted and stored in first place. In this paper, a comparison of a CS method implementation for an ARM and for a GPU is conducted. This study takes into account the accuracy, the performance, and the power consumption for both implementations. The 256-cores GPU of a Jetson TX2 board, the dual-core ARM Cortex-A9 of a ZYNQ-7000 SoC FPGA and the quad-core ARM Cortex-A53 of a ZYNQ UltraScale SoC FPGA are the target platforms used for experimental validation. The obtained results indicate that the embedded GPU is faster but uses more power. Therefore, the most appropriate platform depends on the performance and power constraints of the project.
  • Low power compressive sensing for hyperspectral imagery
    Publication . Nascimento, Jose; Véstias, Mário
    Hyperspectral imaging instruments allow remote Earth exploration by measuring hundreds of spectral bands at very narrow channels of a given spatial area. The resulting hyperspectral data cube typically comprises several gigabytes. Such extremely large volumes of data introduces problems in its transmission to Earth due to limited communication bandwidth. As a result, the applicability of data compression techniques to hyperspectral images have received increasing attention. This paper, presents a study of the power and time consumption of a parallel implementation for a spectral compressive acquisition method on a Jetson TX2 platform. The conducted experiments have been performed to demonstrate the applicability of these methods for onboard processing. The results show that by using this low energy consumption GPU and integer data type is it possible to obtain real-time performance with a very limited power requirement while maintaining the methods accuracy.
  • Hyperspectral compressive sensing - a low power consumption approach
    Publication . Nascimento, Jose; Véstias, Mário; Duarte, Rui
    Hyperspectral imaging instruments allow data collection in hundreds of spectral bands for the same area on the surface of the Earth. The resulting multidimensional data cube typically comprises several GBs per light. Due to the extremely large volumes of data collected by imaging spectrometers, hyperspectral data compression, dimensionality reduction and Compressive Sensing (CS) techniques has received considerable interest in recent years. These data are usually acquired by a satellite or an airbone instrument and sent to a ground station on Earth for subsequent processing. Usually the bandwidth connection between the satellite/airborne platform and the ground station is reduced, which limits the amount of data that can be transmitted. As a result, there is a clear need for (either lossless or lossy) hyperspectral data compression techniques that can be applied on-board the imaging instrument. This paper, presents a study of the power and time consumption and accuracy of a parallel implementation for a spectral compressive acquisition method on a Jetson TX2 platform, which is well suited to perform vector operations such as dot products. This implementation exploits the architecture at low level, using shared memory and coalesced accesses to memory. The conducted experiments have been performed to demonstrate the applicability, in terms of accuracy, time consuming and power consumption of these methods for onboard processing. The results show that by using this low power consumption GPU is it possible to obtain real-time performance with a very limited power requirement.