Repository logo
 

Search Results

Now showing 1 - 10 of 10
  • A review of synthetic-aperture radar image formation algorithms and implementations: a computational perspective
    Publication . Cruz, Helena; Véstias, Mário; Monteiro, J; Cláudio de Campos Neto, Horácio; Duarte, Rui
    Designing synthetic-aperture radar image formation systems can be challenging due to the numerous options of algorithms and devices that can be used. There are many SAR image formation algorithms, such as backprojection, matched-filter, polar format, Range–Doppler and chirp scaling algorithms. Each algorithm presents its own advantages and disadvantages considering efficiency and image quality; thus, we aim to introduce some of the most common SAR image formation algorithms and compare them based on these two aspects. Depending on the requisites of each individual system and implementation, there are many device options to choose from, for in stance, FPGAs, GPUs, CPUs, many-core CPUs, and microcontrollers. We present a review of the state of the art of SAR imaging systems implementations. We also compare such implementations in terms of power consumption, execution time, and image quality for the different algorithms used.
  • Hybrid dot-product calculation for convolutional neural networks in FPGA
    Publication . Véstias, Mário; Duarte, Rui Policarpo; De Sousa, Jose; Cláudio de Campos Neto, Horácio
    Convolutional Neural Networks (CNN) are quite useful in edge devices for security, surveillance, and many others. Running CNNs in embedded devices is a design challenge since these models require high computing power and large memory storage. Data quantization is an optimization technique applied to CNN to reduce the computing and memory requirements. The method reduces the number of bits used to represent weights and activations, which consequently reduces the size of operands and of the memory. The method is more effective if hybrid quantization is considered in which data in different layers may have different bit widths. This article proposes a new hardware module to calculate dot-products of CNNs with hybrid quantization. The module improves the implementation of CNNs in low density FPGAs, where the same module runs dot-products of different layers with different data quantizations. We show implementation results in ZYNQ7020 and compare with state-of-the-art works. Improvements in area and performance are achieved with the new proposed module.
  • Onboard processing of synthetic aperture radar backprojection algorithm in FPGA
    Publication . Mota, David; Cruz, Helena; Miranda, Pedro R.; Duarte, Rui Policarpo; De Sousa, Jose; Cláudio de Campos Neto, Horácio; Véstias, Mário
    Synthetic aperture radar is a microwave technique to extracting image information of the target. Electromagnetic waves that are reflected from the target are acquired by the aircraft or satellite receivers and sent to a ground station to be processed by applying computational demanding algorithms. Radar data streams are acquired by an aircraft or satellite and sent to a ground station to be processed in order to extract images from the data since these processing algorithms are computationally demanding. However, novel applications require real-time processing for real-time analysis and decisions and so onboard processing is necessary. Running computationally demanding algorithms on onboard embedded systems with limited energy and computational capacity is a challenge. This article proposes a configurable hardware core for the execution of the backprojection algorithm with high performance and energy efficiency. The original backprojection algorithm is restructured to expose computational parallelism and then optimized by replacing floating-point with fixed-point arithmetic. The backprojection core was integrated into a system-onchip architecture and implemented in a field-programmable gate array. The proposed solution runs the optimized backprojection algorithm over images of sizes 512 x 512 and 1024 x 1024 in 0.14 s (0.41 J) and 1.11 s (3.24 J), respectively. The architecture is 2.6x faster and consumes 13x less energy than an embedded Jetson TX2 GPU. The solution is scalable and, therefore, a tradeoff exists between performance and utilization of resources.
  • Lite-CNN: a high-performance architecture to execute CNNs in low density FPGAs
    Publication . Véstias, Mário; Duarte, Rui; De Sousa, Jose; Cláudio de Campos Neto, Horácio
    Due to the computational complexity of Convolutional Neural Networks (CNNs), high performance platforms are generally considered for their execution. However, CNNs are very useful in embedded systems and its execution right next to the source of data has many advantages, like avoiding the need for data communication. In this paper, we propose an architecture for CNN inference (Lite-CNN) that can achieve high performance in low density FPGAs. Lite-CNN adopts a fixed-point representation for both neurons and weights, which was already shown to be sufficient for most CNNs. Also, with a simple and known dot product reorganization, the number of multiplications is reduced to half. We show implementation results for 8 bit fixed-point in a ZYNQ7020 and extrapolate for other larger FPGAs. Lite-CNN achieves 410 GOPs in a ZYNQ7020.
  • Energy-efficient and real-time wearable for wellbeing-monitoring IoT system based on SoC-FPGA
    Publication . Frutuoso, Maria Inês; Cláudio de Campos Neto, Horácio; Véstias, Mário; Duarte, Rui Policarpo
    Wearable devices used for personal monitoring applications have been improved over the last decades. However, these devices are limited in terms of size, processing capability and power consumption. This paper proposes an efficient hardware/software embedded system for monitoring bio-signals in real time, including a heart rate calculator using PPG and an emotion classifier from EEG. The system is suitable for outpatient clinic applications requiring data transfers to external medical staff. The proposed solution contributes with an effective alternative to the traditional approach of processing bio-signals offline by proposing a SoC-FPGA based system that is able to fully process the signals locally at the node. Two sub-systems were developed targeting a Zynq 7010 device and integrating custom hardware IP cores that accelerate the processing of the most complex tasks. The PPG sub-system implements an autocorrelation peak detection algorithm to calculate heart rate values. The EEG sub-system consists of a KNN emotion classifier of preprocessed EEG features. This work overcomes the processing limitations of microcontrollers and general-purpose units, presenting a scalable and autonomous wearable solution with high processing capability and real-time response.
  • Fast convolutional neural networks in low density FPGAs using zero-skipping and weight pruning
    Publication . Véstias, Mário; Duarte, Rui Policarpo; De Sousa, Jose; Cláudio de Campos Neto, Horácio
    Edge devices are becoming smarter with the integration of machine learning methods, such as deep learning, and are therefore used in many application domains where decisions have to be made without human intervention. Deep learning and, in particular, convolutional neural networks (CNN) are more efficient than previous algorithms for several computer vision applications such as security and surveillance, where image and video analysis are required. This better efficiency comes with a cost of high computation and memory requirements. Hence, running CNNs in embedded computing devices is a challenge for both algorithm and hardware designers. New processing devices, dedicated system architectures and optimization of the networks have been researched to deal with these computation requirements. In this paper, we improve the inference execution times of CNNs in low density FPGAs (Field-Programmable Gate Arrays) using fixed-point arithmetic, zero-skipping and weight pruning. The developed architecture supports the execution of large CNNs in FPGA devices with reduced on-chip memory and computing resources. With the proposed architecture, it is possible to infer an image in AlexNet in 2.9 ms in a ZYNQ7020 and 1.0 ms in a ZYNQ7045 with less than 1% accuracy degradation. These results improve previous state-of-the-art architectures for CNN inference.
  • Parallel dot-products for deep learning on FPGA
    Publication . Véstias, Mário; Duarte, Rui; De Sousa, Jose; Cláudio de Campos Neto, Horácio
    Deep neural networks have recently shown great results in a vast set of image applications. The associated deep learning models are computationally very demanding and, therefore, several hardware solutions have been proposed to accelerate their computation. FPGAs have recently shown very good performances for these kind of applications and so it is considered a promising platform to accelerate the execution of deep learning algorithms. A common operation in these algorithms is multiply-accumulate (MACC) that is used to calculate dot-products. Since many dot products can be calculated in parallel, as long as memory bandwidth is available, it is very important to implement this operation very efficiently to increase the density of MACC units in an FPGA. In this paper, we propose an implementation of parallel MACC units in FPGA for dot-product operations with very high performance/area ratios using a mix of DSP blocks and LUTs. We consider fixed-point representations with 8 bits of size, but the method can be applied to other bit widths. The method allows us to achieve TOPs performances, even for low cost FPGAs.
  • Improving the area of fast parallel decimal multipliers
    Publication . Véstias, Mário; Cláudio de Campos Neto, Horácio
    Financial and commercial applications depend on decimal arithmetic because they must produce results that match exactly those obtained by human calculations. Decimal multiplication is a frequently used operation in these applications and also in the design of decimal floating-point units. In this paper we propose a new architecture for parallel decimal multiplication that improves the area of previous decimal multipliers while keeping the best performances. A decimal adder [1] based on a mixed BCD/excess-6 representation of the operands is utilized. A new partial product generation unit is proposed based on a 5221 recoding of the multiplier digits. With the proposed multiplier, we are able to improve on state-of-the-art parallel decimal multipliers targeting LUT-6 FPGAs. Compared to previous decimal multipliers, implementation results for 2, 4, 8, 16, 32 and 34-digits show that the proposed multiplier achieves over 20% better area without performance degradation.
  • Design of a Multiband Full-Rate Ultra-Wideband Receiver in FPGA
    Publication . Véstias, Mário; Cláudio de Campos Neto, Horácio; Sarmento, Helena
    MultiBand OFDM (MB-OFDM) UWB [1] is a short-range promising wireless technology for high data rate communications up to 480 Mbps. In this paper, we have designed and implemented in an Virtex-6 FPGA an MB-OFDM UWB receiver for the highest data rate of 480 Mbps. To test the system, we have also implemented an MB-OFDM transmitter and an AWGN generator in VHDL and determined the bit error rates at the receiver running in an FPGA.
  • A configurable architecture for running hybrid convolutional neural networks in low-density FPGAs
    Publication . Véstias, Mário; Duarte, Rui; De Sousa, Jose; Cláudio de Campos Neto, Horácio
    Convolutional neural networks have become the state of the art of machine learning for a vast set of applications, especially for image classification and object detection. There are several advantages to running inference on these models at the edge, including real-time performance and data privacy. The high computing and memory requirements of convolutional neural networks have been major obstacles to the broader deployment of CNNs on edge devices. Data quantization is an optimization method that reduces the number of bits used to represent weights and activations of a network model, minimizing storage requirements and computing complexity. Quantization can be applied at the layer level, by using different bit widths in different layers: this is called hybrid quantization. This article proposes a new efficient and configurable architecture for running CNNs with hybrid quantization in low-density Field-Programmable Gate Arrays (FPGAs) targeting edge devices. The architecture has been implemented on the Xilinx ZYNQ7020/45 devices and is running the AlexNet and VGG16 networks. Running AlexNet, the architecture has a throughput up to 508 images per second on the ZYNQ7020 device, and 1639 images per second on the ZYNQ7045 device. Considering VGG16, the architecture delivers up to 43 images per second on the ZYNQ7020 device, and 81 images per second on the ZYNQ7045 device. The proposed hybrid architecture achieves up to 13.7 x improvement in performance compared to state-of-the-art solutions, with small accuracy degradation.