Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 61
  • Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applications
    Publication . Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Louro, Paula; Vieira, Manuela; Silva, R. P. O.; Teixeira, D.; Da Costa Ribeiro, Ana Paula; Prazeres, Duarte; Alegria, Elisabete
    This paper reports about a study of the local plasmonic resonance (LSPR) produced by metal nanoparticles embedded in a dielectric or semiconductor matrix. It is presented an analysis of the LSPR for different nanoparticle metals, shapes, and embedding media composition. Metals of interest for nanoparticle composition are Aluminum and Gold. Shapes of interest are nanospheres and nanotriangles. We study in this work the optical properties of metal nanoparticles diluted in water or embedded in amorphous silicon, ITO and ZnO as a function of size, aspect-ratio and metal type. Following the analysis based on the exact solution of the Mie theory and DDSCAT numerical simulations, it is presented a comparison with experimental measurements realized with arrays of metal nanospheres. Simulations are also compared with the LSPR produced by gold nanotriangles (Au NTs) that were chemically produced and characterized by microscope and optical measurements.
  • Performance of an a-Si:H MMI multichannel beam splitter analyzed by computer simulation
    Publication . Costa, João; Almeida, Daniel; Fantoni, Alessandro; Lourenço, Paulo; Fernandes, Miguel; Vieira, Manuela
    Optical power splitters are widely used in many applications and di_erent typologies have been developed for devices dedicated to this function. Among them, the multimode interference design is especially attractive for its simplicity and performance making it a strong candidate for low-cost applications, such as photonics lab-on-chips for biomedical point of care systems. Within this context, splitting the optical beam equally into multiple channels is of fundamental importance to provide reference arms, parallel sensing of di_erent biomarkers and allowing multiplexed reading schemes. From a theoretical point of view, the multimode structure allows implementation of the power splitting function for an arbitrary number of channels, but in practice its performance is limited by lithographic mask imperfections and waveguide width. In this work we analyze multimode waveguide structures, based on amorphous silicon (a-Si:H) over insulator (SiO2), which can be produced by the PECVD deposition technique. The study compares the performance of several 1 to N designs optimized to provide division of the fundamental quasi-TM mode as a function of input polarization and lithographic roughness. The performance is analyzed in terms of output power uniformity and attenuation and is based on numerical simulations using the Beam Propagation Method and Eigenmode Expansion Propagation Methods.
  • Direct Color Sensor, Optical Amplifier and Demux Device Integrated on a Single Monolithic SiC Photodetector
    Publication . Vieira, Manuela; Louro, Paula; Vieira, Manuel; Costa, João; Fernandes, Miguel
    A pi'n/pin a-SiC:H voltage and optical bias controlled device is presented and its behavior as image and color sensor, optical amplifier and demux device is discussed. The design and the light source properties are correlated with the sensor output characteristics. Different readout techniques are used. When a low power monochromatic scanner readout the generated carriers the transducer recognizes a color pattern projected on it acting as a direct color and image sensor. Scan speeds up to 10(4) lines per second are achieved without degradation in the resolution. If the photocurrent generated by different monochromatic pulsed channels is readout directly, the information is demultiplexed. Results show that it is possible to decode the information from three simultaneous color channels without bit errors at bit rates per channel higher than 4000 bps. Finally, when triggered by light of appropriated wavelength, it can amplify or suppress the generated photocurrent working as an optical amplifier (C) 2009 Published by Elsevier Ltd.
  • Laser-scanned p-i-n photodiode (LSP) for image detection
    Publication . Vieira, Manuela; Fernandes, Miguel; Martins, João; Louro, Paula; Maçarico, António Filipe Ruas Trindade; Schwarz, Reinhard; Schubert, Markus B.
    Amorphous and microcrystalline glass/ZnO:Al/p(a-Si:H)/i(a-Si:H)/n(a-Si1 C :H)/Al imagers with different n-layer resistivities were produced by plasma-enhanced chemical vapor deposition technique (PE-CVD). The transducer is a simple, large area p-i-n photodiode; an image projected onto the sensing element leads to spatially confined depletion regions that can be readout by scanning the photodiode with a low-power modulated laser beam. The essence of the scheme is the analog readout and the absence of semiconductor arrays or electrode potential manipulations to transfer the information coming from the transducer. The effect of the image intensity on the sensor output characteristics (sensitivity, linearity, blooming, resolution, and signal-tonoise ratio) are analyzed for different material composition. The results show that the responsivity and the spatial resolution are limited by the conductivity of the doped layers. An enhancement of one order of magnitude in the image intensity and on the spatial resolution is achieved with a responsivity of 0.2 mW/cm2 by decreasing the -layer conductivity by the same amount. In a 4 4 cm2 laser-scanned photodiode (LSP) sensor, the resolution was less than 100 m and the signal-to-noise (S/N) ratio was about 32 dB. Aphysical model supported by electrical simulation gives insight into the methodology used for image representation.
  • Driving scheme using MIS photosensor for luminance control of AMOLED pixel
    Publication . Vygranenko, Yuri; Fernandes, Miguel; Sazonov, Andrei; Vieira, Manuela
    This paper presents a new driving scheme utilizing an in-pixel metal-insulator-semiconductor (MIS) photosensor for luminance control of active-matrix organic light-emitting diode (AMOLED) pixel. The proposed 3-TFT circuit is controlled by an external driver performing the signal readout, processing, and programming operations according to a luminance adjusting algorithm. To maintain the fabrication simplicity, the embedded MIS photosensor shares the same layer stack with pixel TFTs. Performance characteristics of the MIS structure with a nc-Si : H/a-Si : H bilayer absorber were measured and analyzed to prove the concept. The observed transient dark current is associated with charge trapping at the insulator-semiconductor interface that can be largely eliminated by adjusting the bias voltage during the refresh cycle. Other factors limiting the dynamic range and external quantum efficiency are also determined and verified using a small-signal model of the device. Experimental results demonstrate the feasibility of the MIS photosensor for the discussed driving scheme.
  • Stacked photo-sensing devices based on SiC alloys A non-pixelled architecture for imagers and demultiplexing devices
    Publication . Vieira, Manuela; Louro, Paula; Fernandes, Miguel; Fantoni, Alessandro; Vieira, Manuel Augusto; Costa, João
    In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
  • Photoconductivity kinetics of indium sulfofluoride thin films star
    Publication . Vygranenko, Yuri; Fernandes, Miguel; Vieira, Manuela; Lavareda, Guilherme; CARVALHO, CARLOS; Brogueira, Pedro; Amaral, Ana
    Indium sulfofluoride is an amorphous wide-gap semiconductor exhibiting high sensitivity to UV radiation. This work reports on the kinetics of photoconductivity in indium sulfofluoride thin films along with their electrical and optical properties. The films were deposited by radio-frequency plasma-enhanced reactive thermal evaporation. The film characterization includes electrical, optical, and photoconductivity measurements. The films are highly transparent in the visible-infrared range due to an indirect bandgap of 2.8 eV. The spectral response measurements have revealed existence of the band tail states. The synthesized compound is highly resistive (similar to 200 M ohm-cm at 300 K) and exhibits extremely slow photocurrent relaxations. Photoconductivity kinetics was studied under various excitation conditions. A dependence of the photocurrent on the incident photon flux was also determined.
  • Tuning the spectral distribution of p-i-n a-SiC : H devices for colour detection
    Publication . Vieira, Manuela; Louro, Paula; Fantoni, Alessandro; Fernandes, Miguel
    ZnO:Al/p (SiC:H)/i (Si:H)/n (SiC:H) large area image and colour sensor are analysed. Carrier transport and collection efficiency are investigated from dark and illuminated current-voltage (I-V) dependence and spectral response measurements under different optical and electrical bias conditions. Results show that the carrier collection depends on the optical bias and on the applied voltage. By changing the electrical bias around the open circuit voltage it is possible to filter the absorption at a given wavelength and so to tune the spectral sensitivity of the device. Transport and optical modelling give insight into the internal physical process and explain the bias control of the spectral response and the image and colour sensing properties of the devices.
  • Detection of Change in Fluorescence Between Reactive Cyan and the Yellow Fluorophores Usinga-SiC:H Multilayer Transducers
    Publication . Vieira, Manuela; Costa, João; Louro, Paula; Fernandes, Miguel; Fantoni, Alessandro
    Optical colour sensors based on multilayered a-SiC:H heterostructures can act as voltage controlled optical filters in the visible range. In this article we investigate the application of these structures for Fluorescence Resonance Energy Transfer (FRET) detection, The characteristics of a-SiC:H multilayered structure are studied both theoretically and experimentally in several wavelengths corresponding to different fluorophores. The tunable optical p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures were produced by PECVD and tested for a proper fine tuning in the violet, cyan and yellow wavelengths. The devices were characterized through transmittance and spectral response measurements, under different electrical bias and frequencies. Violet, cyan and yellow signals were applied in simultaneous and results have shown that they can be recovered under suitable applied bias. A theoretical analysis supported by numerical simulation is presented.
  • Non-selective optical wavelength-division multiplexing devices based on a-SiC:H multilayer heterostuctures
    Publication . Vieira, Manuela; Fernandes, Miguel; Louro, Paula; Vieira, Manuel; Barata, Manuel; Fantoni, Alessandro
    In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.