Repository logo
 

Search Results

Now showing 1 - 9 of 9
  • Complex Dynamics of defective interfering baculoviruses during serial passage in insect cells
    Publication . Zwart, Mark P.; Pijlman, Gorben P.; Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Elena, Santiago F.
    Defective interfering (DI) viruses are thought to cause oscillations in virus levels, known as the ‘Von Magnus effect’. Interference by DI viruses has been proposed to underlie these dynamics, although experimental tests of this idea have not been forthcoming. For the baculoviruses, insect viruses commonly used for the expression of heterologous proteins in insect cells, the molecular mechanisms underlying DI generation have been investigated. However, the dynamics of baculovirus populations harboring DIs have not been studied in detail. In order to address this issue, we used quantitative real-time PCR to determine the levels of helper and DI viruses during 50 serial passages of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) in Sf21 cells. Unexpectedly, the helper and DI viruses changed levels largely in phase, and oscillations were highly irregular, suggesting the presence of chaos. We therefore developed a simple mathematical model of baculovirus-DI dynamics. This theoretical model reproduced patterns qualitatively similar to the experimental data. Although we cannot exclude that experimental variation (noise) plays an important role in generating the observed patterns, the presence of chaos in the model dynamics was confirmed with the computation of the maximal Lyapunov exponent, and a Ruelle-Takens-Newhouse route to chaos was identified at decreasing production of DI viruses, using mutation as a control parameter. Our results contribute to a better understanding of the dynamics of DI baculoviruses, and suggest that changes in virus levels over passages may exhibit chaos.
  • On chaos, transient chaos and ghosts in single populations models with allee effects
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
    Density-dependent effects, both positive or negative, can have an important impact on the population dynamics of species by modifying their population per-capita growth rates. An important type of such density-dependent factors is given by the so-called Allee effects, widely studied in theoretical and field population biology. In this study, we analyze two discrete single population models with overcompensating density-dependence and Allee effects due to predator saturation and mating limitation using symbolic dynamics theory. We focus on the scenarios of persistence and bistability, in which the species dynamics can be chaotic. For the chaotic regimes, we compute the topological entropy as well as the Lyapunov exponent under ecological key parameters and different initial conditions. We also provide co-dimension two bifurcation diagrams for both systems computing the periods of the orbits, also characterizing the period-ordering routes toward the boundary crisis responsible for species extinction via transient chaos. Our results show that the topological entropy increases as we approach to the parametric regions involving transient chaos, being maximum when the full shift R(L)(infinity) occurs, and the system enters into the essential extinction regime. Finally, we characterize analytically, using a complex variable approach, and numerically the inverse square-root scaling law arising in the vicinity of a saddle-node bifurcation responsible for the extinction scenario in the two studied models. The results are discussed in the context of species fragility under differential Allee effects. (C) 2011 Elsevier Ltd. All rights reserved.
  • Topological Complexity and Predictability in the Dynamics of a Tumor Growth Model with Shilnikov's Chaos
    Publication . Duarte, Jorge; Januário, Cristina; Rodrigues, Carla; Sardanyes, Josep
    Dynamical systems modeling tumor growth have been investigated to determine the dynamics between tumor and healthy cells. Recent theoretical investigations indicate that these interactions may lead to different dynamical outcomes, in particular to homoclinic chaos. In the present study, we analyze both topological and dynamical properties of a recently characterized chaotic attractor governing the dynamics of tumor cells interacting with healthy tissue cells and effector cells of the immune system. By using the theory of symbolic dynamics, we first characterize the topological entropy and the parameter space ordering of kneading sequences from one-dimensional iterated maps identified in the dynamics, focusing on the effects of inactivation interactions between both effector and tumor cells. The previous analyses are complemented with the computation of the spectrum of Lyapunov exponents, the fractal dimension and the predictability of the chaotic attractors. Our results show that the inactivation rate of effector cells by the tumor cells has an important effect on the dynamics of the system. The increase of effector cells inactivation involves an inverse Feigenbaum (i.e. period-halving bifurcation) scenario, which results in the stabilization of the dynamics and in an increase of dynamics predictability. Our analyses also reveal that, at low inactivation rates of effector cells, tumor cells undergo strong, chaotic fluctuations, with the dynamics being highly unpredictable. Our findings are discussed in the context of tumor cells potential viability.
  • Activation of effector immune cells promotes tumor stochastic extinction: A homotopy analysis approach
    Publication . Sardanyés, Josep; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Gil-Gómez, Gabriel; Duarte, Jorge
    In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems – the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a period-doubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression.
  • Topological entropy of catalytic sets: Hypercycles revisited
    Publication . Sardanyes, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno
    The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
  • Quantifying chaos for ecological stoichiometry
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno; Sardanyes, Josep
    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model.
  • Avoiding healthy cells extinction in a cancer model
    Publication . Lopez, Álvaro G.; Sabuco, Juan; Seoane, Jesus M.; Duarte, Jorge; Januário, Cristina; Sanjuan, Miguel A. F.
    We consider a dynamical model of cancer growth including three interacting cell populations of tumor cells, healthy host cells and immune effector cells. For certain parameter choice, the dynamical system displays chaotic motion and by decreasing the response of the immune system to the tumor cells, a boundary crisis leading to transient chaotic dynamics is observed. This means that the system behaves chaotically for a finite amount of time until the unavoidable extinction of the healthy and immune cell populations occurs. Our main goal here is to apply a control method to avoid extinction. For that purpose, we apply the partial control method, which aims to control transient chaotic dynamics in the presence of external disturbances. As a result, we have succeeded to avoid the uncontrolled growth of tumor cells and the extinction of healthy tissue. The possibility of using this method compared to the frequently used therapies is discussed. (C) 2014 Elsevier Ltd. All rights reserved.
  • On the analytical solutions of the Hindmarsh-Rose neuronal model
    Publication . Duarte, Jorge; Januário, Cristina; Martins, Nuno
    In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.
  • How complex, probable, and predictable is genetically driven red queen chaos?
    Publication . Duarte, Jorge; Rodrigues, Carla; Januário, Cristina; Martins, Nuno; Sardanyés, Josep
    Coevolution between two antagonistic species has been widely studied theoretically for both ecologically- and genetically-driven Red Queen dynamics. A typical outcome of these systems is an oscillatory behavior causing an endless series of one species adaptation and others counter-adaptation. More recently, a mathematical model combining a three-species food chain system with an adaptive dynamics approach revealed genetically driven chaotic Red Queen coevolution. In the present article, we analyze this mathematical model mainly focusing on the impact of species rates of evolution (mutation rates) in the dynamics. Firstly, we analytically proof the boundedness of the trajectories of the chaotic attractor. The complexity of the coupling between the dynamical variables is quantified using observability indices. By using symbolic dynamics theory, we quantify the complexity of genetically driven Red Queen chaos computing the topological entropy of existing one-dimensional iterated maps using Markov partitions. Co-dimensional two bifurcation diagrams are also built from the period ordering of the orbits of the maps. Then, we study the predictability of the Red Queen chaos, found in narrow regions of mutation rates. To extend the previous analyses, we also computed the likeliness of finding chaos in a given region of the parameter space varying other model parameters simultaneously. Such analyses allowed us to compute a mean predictability measure for the system in the explored region of the parameter space. We found that genetically driven Red Queen chaos, although being restricted to small regions of the analyzed parameter space, might be highly unpredictable.