Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Scalar mass dependence of angular variables in t(t)over-bar phi productionPublication . Azevedo, Duarte; Capucha, Rodrigo; Onofre, Antonio; Santos, RuiIn this paper we explore CP discrimination in the associated production of top-quark pairs (t (t) over bar) with a generic scalar boson (phi) at the LHC. We probe the CP-sensitivity of several observables for a varying scalar boson mass and CP-number, either CP-even (phi = H) or CP-odd (phi= A), using dileptonic final states of the t (t) over bar phi system, with phi -> (b) over bar. We show that CP-searches are virtually impossible for phi boson masses above a few hundred GeV in this channel. A full phenomenological analysis was performed, using Standard Model background and signal events generated with MadGraph5 aMC@NLO and reconstructed using a kinematic fit. The most sensitive CP-observables are used to compute Confidence Levels (CLs), as a function of luminosity, for the exclusion of different signal hypotheses with scalar and pseudoscalar boson masses that range from m(phi) = 40 GeV up to 200 GeV. We finalize by analysing the impact of a measurement (or limit) of the CP-violating angle in the parameter space of a complex two-Higgs doublet model known as the C2HDM.
- Vacuum structure of the Z(2) symmetric Georgi-Machacek modelPublication . Azevedo, Duarte; Ferreira, Pedro Miguel; Logan, Heather E.; Santos, RuiWe discuss the vacuum structure of a version of the Georgi-Machecek model with an exact Z(2) symmetry acting on the triplet fields. Besides the usual custodial-symmetric model, with rho = 1 at tree-level, a model with a dark matter candidate is also viable. The other phases of the model lead to electric charge breaking, a wrong pattern of electroweak symmetry breaking or to rho not equal 1 at tree-level. We derive conditions to have an absolute minimum in each of the two viable phases, the custodial and the dark matter phases.
- Light Higgs searches in t(t)over-bar phi production at the LHCPublication . Azevedo, Duarte; Capucha, Rodrigo; Gouveia, Emanuel; Onofre, Antonio; Santos, RuiIn this paper we propose a new reconstruction method to explore the low mass region in the associated production of top-quark pairs (t (t) over bar) with a generic scalar boson (phi) at the LHC. The new method of mass reconstruction shows an improved resolution of at least a factor of two in the low mass region when compared to previous methods, without the loss of sensitivity of previous analyses. It turns out that it also leads to an improvement of the mass reconstruction of the 125 GeV Higgs for the same production process. We use an effective Lagrangian to describe a scalar with a generic Yukawa coupling to the top quarks. A full phenomenological analysis was performed, using Standard Model background and signal events generated with MadGraph5_aMC@NLO and reconstructed using a kinematic fit. The use of CP-sensitive variables allows then to maximize the distinction between CP-even and CP-odd components of the Yukawa couplings. Confidence Levels (CLs) for the exclusion of phi bosons with mixed CP (both CP-even and CP-odd components) were determined as a function of the top Yukawa couplings to the phi boson. The mass range analysed starts slightly above the Upsilon mass up to 40 GeV, although the analysis can be used for an arbitrary mass. If no new light scalar is found, exclusion limits at 95% CL for the absolute value of the CP-even and CP-odd Yukawa are derived. Finally, we analyse how these limits constrain the parameter space of the complex two-Higgs doublet model (C2HDM).
- One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter modelPublication . Azevedo, Duarte; Duch, Mateusz; Grzadkowski, Bohdan; Huang, Da; Iglicki, Michal; Santos, RuiRecent dark matter (DM) direct searches place very stringent constraints on the possible DM candidates proposed in extensions of the Standard Model. There are however models where these constraints are avoided. One of the simplest and most striking examples comes from a straightforward Higgs-portal pseudo-scalar DM model featured with a softly broken U(1) symmetry. In this model the tree-level DM-nucleon scattering cross section vanishes in the limit of zero momentum transfer. It has also been argued that the leading-order DM-nucleon cross section appears at the one-loop level. In this work we have calculated the exact cross section in the zero momentum transfer at the leading order i.e., at the one-loop level of perturbative expansion. We have concluded that, in agreement with expectations, the amplitude for the scattering process is UV finite and approaches zero in the limit of vanishing DM masses. Moreover, we made clear that the finite DM velocity correction at tree level is subdominant with respect to the one-loop contribution. Based on the analytic formulae, our numerical studies show that, for a typical choice of model parameters, the DM nuclear recoiling cross section is well below OO(10−50 cm2), which indicates that the DM direct detection signal in this model naturally avoids present strong experimental limits on the cross section.