Repository logo
 

Search Results

Now showing 1 - 10 of 41
  • Criticality of colloids with three distinct interaction patches: As simple as A, B, C?
    Publication . Tavares, Jose; Teixeira, Paulo
    We systematically study the phase behavior of a simple model of associating fluids which consists of hard spherical particles with three short-ranged attractive sites on their surfaces (sticky spots or patches), of types A, B, and C, that can form bonds with energy ij (i,j = A,B,C). We consider realizations of the model with one, two, or three nonzero ij. Using Wertheim’s first order perturbation theory of association, we establish the minimum requirements on the bond energies for the model to exhibit a liquid-vapor critical point, and investigate the nature of criticality in each case. As a preliminary, we rigorously show that, within this theory, particles with M identical sites do not condense if M < 3, a result that was previously conjectured, but never proved.
  • Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties
    Publication . Ivanov, A.O.; Kantorovich, Sofia S.; Rovigatti, Lorenzo; Tavares, Jose; SCIORTINO, Francesco
    We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DRS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole-dipole magnetic interaction increases, It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (rho) of DI-IS plays a crucial part in this transition: at a very low rho only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of rho. The average ring size is found to be a slower increasing function of rho when compared Lo that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the rho-dependence of the initial magnetic susceptibility (chi) when the temperature decreases. The rings clue to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. (C) 2014 Elsevier B.V. All rights reserved.
  • Phase behaviour of pure and mixed patchy colloids - theory and simulation
    Publication . Teixeira, Paulo; Tavares, Jose
    We review the phase behaviour of pure and mixed patchy colloids, as revealed (mostly) by theory and computer simulation. These experimentally-realisable systems are excellent models for investigating the general problem of the interplay between (equilibrium) phase transitions and self-assembly in soft condensed matter. We focus on how liquid vapour condensation can be pre-empted by the formation of different types of aggregates, in particular rings, which we argue is relevant to the criticality of empty fluids and network fluids, and possibly also of dipolar fluids. In this connection we also discuss percolation and gelation in pure and mixed patchy colloids. Finally, we describe the rich phase behaviour of (mostly binary) patchy colloid mixtures.
  • Maximum thermodynamic power coefficient of a wind turbine
    Publication . Tavares, Jose; Patricio, Pedro
    According to the centenary Betz-Joukowsky law, the power extracted from a wind turbine inopen flow cannot exceed 16/27 of the wind transported kinetic energy rate. This limit is usuallyinterpreted as an absolute theoretical upper bound for the power coefficient of all wind turbines,but it was derived in the special case of incompressible fluids. Following the same steps of Betzclassical derivation, we model the turbine as an actuator disk in a one dimensional fluid flowbut consider the general case of a compressible reversible fluid, such as air. In doing so, we areobliged to use not only the laws of mechanics but also and explicitly the laws of thermodynamics.We show that the power coefficient depends on the inlet wind Mach numberM0,andthatitsmaximum value exceeds the Betz-Joukowsky limit. We have developed a series expansion forthe maximum power coefficient in powers of the Mach number M0that unifies all the cases (compressible and incompressible) in the same simple expression: 𝜂max= 16∕27 + 8∕243M20.
  • The condensation and ordering of models of empty liquids
    Publication . Almarza, N. G.; Tavares, Jose; Simões, M.; Gama, Margarida
    We consider a simple model consisting of particles with four bonding sites ("patches"), two of type A and two of type B, on the square lattice, and investigate its global phase behavior by simulations and theory. We set the interaction between B patches to zero and calculate the phase diagram as the ratio between the AB and the AA interactions, epsilon(AB)*, varies. In line with previous work, on three-dimensional off-lattice models, we show that the liquid-vapor phase diagram exhibits a re-entrant or "pinched" shape for the same range of epsilon(AB)*, suggesting that the ratio of the energy scales - and the corresponding empty fluid regime - is independent of the dimensionality of the system and of the lattice structure. In addition, the model exhibits an order-disorder transition that is ferromagnetic in the re-entrant regime. The use of low-dimensional lattice models allows the simulation of sufficiently large systems to establish the nature of the liquid-vapor critical points and to describe the structure of the liquid phase in the empty fluid regime, where the size of the "voids" increases as the temperature decreases. We have found that the liquid-vapor critical point is in the 2D Ising universality class, with a scaling region that decreases rapidly as the temperature decreases. The results of simulations and theoretical analysis suggest that the line of order-disorder transitions intersects the condensation line at a multi-critical point at zero temperature and density, for patchy particle models with a re-entrant, empty fluid, regime. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657406]
  • Branching points in the low-temperature dipolar hard sphere fluid
    Publication . Rovigatti, Lorenzo; Kantorovich, Sofia S.; Ivanov, Alexey O.; Tavares, Jose; SCIORTINO, Francesco
    In this contribution, we investigate the low-temperature, low-density behaviour of dipolar hard-sphere (DHS) particles, i.e., hard spheres with dipoles embedded in their centre. We aim at describing the DHS fluid in terms of a network of chains and rings (the fundamental clusters) held together by branching points (defects) of different nature. We first introduce a systematic way of classifying inter-cluster connections according to their topology, and then employ this classification to analyse the geometric and thermodynamic properties of each class of defects, as extracted from state-of-the-art equilibrium Monte Carlo simulations. By computing the average density and energetic cost of each defect class, we find that the relevant contribution to inter-cluster interactions is indeed provided by (rare) three-way junctions and by four-way junctions arising from parallel or anti-parallel locally linear aggregates. All other (numerous) defects are either intra-cluster or associated to low cluster-cluster interaction energies, suggesting that these defects do not play a significant part in the thermodynamic description of the self-assembly processes of dipolar hard spheres. (C) 2013 AIP Publishing LLC.
  • How patchy can one get and still condense? The role of dissimilar patches in the interactions of colloidal particles
    Publication . Tavares, Jose; Teixeira, Paulo; Gama, Margarida
    We investigate the influence of strong directional, or bonding, interactions on the phase diagram of complex fluids, and in particular on the liquid-vapour critical point. To this end we revisit a simple model and theory for associating fluids which consist of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the interactions between each pair of spots have strengths [image omitted], [image omitted] and [image omitted]. The theory is applied over the whole range of bonding strengths and results are interpreted in terms of the equilibrium cluster structures of the coexisting phases. In systems where unlike sites do not interact (i.e. where [image omitted]), the critical point exists all the way to [image omitted]. By contrast, when [image omitted], there is no critical point below a certain finite value of [image omitted]. These somewhat surprising results are rationalised in terms of the different network structures of the two systems: two long AA chains are linked by one BB bond (X-junction) in the former case, and by one AB bond (Y-junction) in the latter. The vapour-liquid transition may then be viewed as the condensation of these junctions and we find that X-junctions condense for any attractive [image omitted] (i.e. for any fraction of BB bonds), whereas condensation of the Y-junctions requires that [image omitted] be above a finite threshold (i.e. there must be a finite fraction of AB bonds).
  • Simple thermodynamics of jet engines
    Publication . Patricio, Pedro; Tavares, Jose
    We use the first and second laws of thermodynamics to analyze the behavior of an ideal jet engine. Simple analytical expressions for the thermal efficiency, the overall efficiency, and the reduced thrust are derived. We show that the thermal efficiency depends only on the compression ratio r and on the velocity of the aircraft. The other two performance measures depend also on the ratio of the temperature at the turbine to the inlet temperature in the engine, T-3/T-i. An analysis of these expressions shows that it is not possible to choose an optimal set of values of r and T-3/T-i that maximize both the overall efficiency and thrust. We study how irreversibilities in the compressor and the turbine decrease the overall efficiency of jet engines and show that this effect is more pronounced for smaller T-3/T-i.
  • Phase diagrams of binary mixtures of patchy colloids with distinct numbers and types of patches: Theempty fluid regime
    Publication . de las Heras, Daniel; Tavares, Jose; Gama, Margarida
    We investigate the effect of distinct bonding energies on the onset of criticality of low functionality fluid mixtures. We focus on mixtures ofparticles with two and three patches as this includes the mixture where "empty" fluids were originally reported. In addition to the number of patches, thespecies differ in the type of patches or bonding sites. For simplicity, we consider that the patches on each species are identical: one species has threepatches of type A and the other has two patches of type B. We have found a rich phase behavior with closed miscibility gaps, liquid-liquid demixing, and negative azeotropes. Liquid-liquid demixing was found to pre-empt the "empty" fluid regime, of these mixtures, when the AB bonds are weaker than the AA or BB bonds. By contrast, mixtures in this class exhibit "empty" fluid behavior when the AB bonds are stronger than at least one of the other two. Mixtureswith bonding energies epsilon(BB) = epsilon(AB) and epsilon(AA) < epsilon(BB), were found to exhibit an unusual negative azeotrope. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561396]
  • Free energy calculations for rings and chains formed by dipolar hard spheres
    Publication . Ronti, Michela; Rovigatti, Lorenzo; Tavares, Jose; Ivanov, Alexey O.; Kantorovichaf, Sofia S.; SCIORTINO, Francesco
    We employ a method based on Monte Carlo grand-canonical simulations to precisely calculate partition functions of non-interacting chains and rings formed by dipolar hard spheres (DHS) at low temperature. The extended low temperature region offered by such cluster calculations, compared to what had been previously achieved with standard simulations, opens up the possibility of exploring a part of the DHS phase diagram which was inaccessible before. The reported results offer the unique opportunity of verifying well-established theoretical models based on the ideal gas of cluster approximation in order to clarify their range of validity. They also provide the basis for future studies in which cluster–cluster interactions will be included.