Browsing by Author "Von Rekowski, Cristiana"
Now showing 1 - 10 of 20
Results Per Page
Sort Options
- Alternative sérum biomarkers of bacteraemia for intensive care unit patientsPublication . Araújo, Rúben; Von Rekowski, Cristiana; Bento, Luís; Fonseca, Tiago AH; Calado, CecíliaThe diagnosis of infections in hospital or clinical settings usually involves a series of time-consuming steps, including biological sample collection, culture growth of the organism isolation and subsequent characterization. For this, there are diverse infection biomarkers based on blood analysis, however, these are of limited use in patients presenting confound processes as inflammatory process as occurring at intensive care units. In this preliminary study, the application of serum analysis by FTIR spectroscopy, to predict bacteraemia in 102 critically ill patients in an ICU was evaluated. It was analysed the effect of spectra pre-processing methods and spectral sub-regions on t-distributed stochastic neighbour embedding. By optimizing Support Vector Machine (SVM) models, based on normalised second derivative spectra of a smaller subregion, it was possible to achieve a good bacteraemia predictive model with a sensitivity and specificity of 76%. Since FTIR spectra of serum is acquired in a simple, economic and rapid mode, the technique presents the potential to be a cost-effective methodology of bacteraemia identification, with special relevance in critically ill patients, where a rapid infection diagnostic will allow to avoid the unnecessary use of antibiotics, which ultimately will ease the load on already fragile patients' metabolism.
- An interactive dashboard for statistical analysis of intensive care unit COVID-19 dataPublication . Dias, Rúben; Ferreira, Artur; Pinto, Iola; Brás-Geraldes, Carlos; Von Rekowski, Cristiana; Bento, LuísCOVID-19 caused a pandemic, due to its ease of transmission and high number of infections. The evolution of the pandemic and its consequences for the mortality and morbidity of populations, especially the elderly, generated several scientific studies and many research projects. Among them, we have the Predictive Models of COVID-19 Outcomes for Higher Risk Patients Towards a Precision Medicine (PREMO) research project. For such a project with many data records, it is necessary to provide a smooth graphical analysis to extract value from it. Methods: In this paper, we present the development of a full-stack Web application for the PREMO project, consisting of a dashboard providing statistical analysis, data visualization, data import, and data export. The main aspects of the application are described, as well as the diverse types of graphical representations and the possibility to use filters to extract relevant information for clinical practice. Results: The application, accessible through a browser, provides an interactive visualization of data from patients admitted to the intensive care unit (ICU), throughout the six waves of COVID-19 in two hospitals in Lisbon, Portugal. The analysis can be isolated per wave or can be seen in an aggregated view, allowing clinicians to create many views of the data and to study the behavior and consequences of different waves. For instance, the experimental results show clearly the effect of vaccination as well as the changes on the most relevant clinical parameters on each wave. Conclusions: The dashboard allows clinicians to analyze many variables of each of the six waves as well as aggregated data for all the waves. The application allows the user to extract information and scientific knowledge about COVID-19’s evolution, yielding insights for this pandemic and for future pandemics.
- Comparison of analytical methods of serum untargeted metabolomicsPublication . Fonseca, Tiago AH; Araújo, Rúben; Von Rekowski, Cristiana; Justino, Gonçalo C.; Oliveira, Maria Da Conceiçao; Bento, Luís; Calado, CecíliaMetabolomics has emerged as a powerful tool in the discovery of new biomarkers for medical diagnosis and prognosis. However, there are numerous challenges, such as the methods used to characterize the system metabolome. In the present work, the comparison of two analytical platforms to acquire the serum metabolome of critically ill patients was conducted. The untargeted serum metabolome analysis by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) enabled to identify a set of metabolites statistically different between deceased and discharged patients. This set of metabolites also enabled to develop a very good predictive model, based on linear discriminant analysis (LDA) with a sensitivity and specificity of 80% and 100%, respectively. Fourier Transform Infrared (FTIR) spectroscopy was also applied in a high-throughput, simple and rapid mode to analyze the serum metabolome. Despite this technique not enabling the identification of metabolites, it allowed to identify molecular fingerprints associated to each patient group, while leading to a good predictive model, based on principal component analysis-LDA, with a sensitivity and specificity of 100% and 90%, respectively. Therefore, both analytical techniques presented complementary characteristics, that should be further explored for metabolome characterization and application as for biomarkers discovery for medical diagnosis and prognosis.
- Comparison of the serum whole molecular composition with the serum metabolome to acquire the pathophysiological statePublication . Correia, Inês; Henrique Fonseca, Tiago Alexandre; Pataco, Jéssica; Oliveira, Mafalda; Caldeira, Viviana; Domingues, N.; Von Rekowski, Cristiana; Araújo, Rúben Alexandre Dinis; Bento, Luís; Calado, Cecília; Domingues, Nuno; Tomar, Rajesh Singh; Mahamud, TosapornOmics Sciences serve as an essential tool to advance precision medicine. Since conventional omics sciences rely on laborious, complex and time-consuming analytical processes, this study evaluated whether the serum molecular fingerprint, captured by FTIR spectroscopy, could predict mortality risk in critically ill patients. Both the whole serum and the serum metabolome (i.e., serum after removal of macromolecules) were analyzed. PCA-LDA models demonstrated strong performance in predicting patients’ pathophysiological state. A significantly more accurate model for predicting the patients’ pathophysiological state was achieved using the serum metabolome (94%) compared to the whole serum (81%). This is consistent with metabolomics, which provides a more direct view of the systems’ functionality. These promising results highlight the importance of FTIR spectroscopy analysis of the serum metabolome, offering a rapid, cost-effective, and high-throughput method for assessing patients' pathophysiological state.
- Cytokine-based insights into bloodstream infections and bacterial gram typing in ICU COVID-19 patientsPublication . Araújo, Rúben Alexandre Dinis; Ramalhete, Luís; Von Rekowski, Cristiana; Henrique Fonseca, Tiago Alexandre; Calado, Cecília; Bento, LuísTimely and accurate identification of bloodstream infections (BSIs) in intensive care unit (ICU) patients remains a key challenge, particularly in COVID-19 settings, where immune dysregulation can obscure early clinical signs. Methods: Cytokine profiling was evaluated to discriminate between ICU patients with and without BSIs, and, among those with confirmed BSIs, to further stratify bacterial infections by Gram type. Serum samples from 45 ICU COVID-19 patients were analyzed using a 21-cytokine panel, with feature selection applied to identify candidate markers. Results: A machine learning workflow identified key features, achieving robust performance metrics with AUC values up to 0.97 for BSI classification and 0.98 for Gram typing. Conclusions: In contrast to traditional approaches that focus on individual cytokines or simple ratios, the present analysis employed programmatically generated ratios between pro-inflammatory and anti-inflammatory cytokines, refined through feature selection. Although further validation in larger and more diverse cohorts is warranted, these findings underscore the potential of advanced cytokine-based diagnostics to enhance precision medicine in infection management.
- Development of Predictive Models for COVID-19 Prognosis based on Patients’ Demographic and Clinical DataPublication . Von Rekowski, Cristiana; Calado, Cecília Ribeiro da Cruz; Pinto, Iola; Bento, LuísBackground – Cases of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were first reported in late December 2019. Due to the large spectrum of clinical presentations and outcomes, the disease was named Coronavirus Disease 2019 (COVID-19) and characterized as a pandemic due to the elevated number of cases worldwide, the high transmission rate and the lack of action measures. Since then, a lot of progress has been made, but the study of demographic and clinical information and the determination of possible laboratory biomarkers for COVID-19 prognosis is crucial. Purpose – Determine predictive biomarkers for COVID-19’s outcome (death or survival), in critically ill patients, using clinical, demographic and laboratory data from the intensive care unit (ICU). Methods – Demographic, clinical and laboratory data from 337 COVID-19 patients admitted to the ICU of Centro Hospitalar Universitário Lisboa Central, Portugal, between March 2020 and March 2021, was extracted from the hospital’s electronic medical record system, pre-processed, and analyzed. Comparisons were made regarding death, the need of invasive mechanic ventilation (IMV), the first three COVID-19 waves and age groups. Longitudinal data was gathered over the course of the patients stay in the ICU. To infer about the evolution of the patients' condition in the first week of ICU admission, a comparative analysis was carried out between the data from the 2nd (335 patients) and 7th days (216 patients). Comparisons of laboratory parameters between discharged and deceased patients, at these time points were performed. The associations between the several biomarkers and death were tested by means of Univariate Generalized Estimating Equations (GEEs) models. Additionally, to analyze the impact of some biomarkers in mortality, crude odds ratios were estimated and interpreted, with the corresponding 95% confidence intervals (CIs). Death event-free survival rates were obtained by the Kaplan-Meier estimator. All P values were considered statistically significant at P<0.05. Results – Deceased patients were considerably older, had more comorbidities, required more IMV, and spent less time in the hospital than discharged patients. Death rates did not differ significantly between COVID-19 waves. Patients from the 1st wave were significantly older and relied more on IMV and extracorporeal membrane oxygenation (ECMO). Most of the detected differences regarding laboratory biomarkers were found between discharged and deceased patients from the 2nd and 3rd waves, being that the deceased ones had almost always worse results. In general, worse results were obtained in the 1st wave and in the 7th day of ICU admission. In 2nd day of ICU admission, 2nd wave, higher mortality rates were observed for patients with lymphocyte (LYM) levels under normality ranges. In the 3rd wave, mortality rates were higher for patients with high sensitivity troponin I (hs-cTn I) levels above normality ranges in the 2nd day of ICU admission, with LYM levels under normality ranges in the 7th day of ICU admission, and with platelet (PLT) levels below normality ranges, either in the 2nd or 7th days of ICU admission. Through the univariate logistic regression’s results in 2nd day of ICU admission, 2nd wave, hs-cTn I, red blood cell (RBC) counts, platelet-lymphocyte ratio (PLR) and neutrophil-lymphocyte ratio (NLR) showed significant association with the risk of death. In 7th day of ICU admission, C-reactive protein (CRP), RBC counts, hematocrit (HCT), hemoglobin (HGB), white blood cell (WBC) and neutrophil (NEU) counts, eosinophil (EO) counts and NLR, revealed significant association with the risk of death. In the 2nd day of ICU admission, 3rd wave, hs-cTn I, PLT counts, lactate dehydrogenase (LDH) and CRP showed significant association with the risk of death. For the 7th day, PCT, CRP, WBC and NEU counts, LYM counts, NLR and PLT counts results were also associated with higher risks of death. Univariate GEEs models results demonstrated that, in the 1st wave, hs-cTn I, myoglobin, EO counts, results were associated with higher risks of death. In the 2nd wave, the risk of death was significantly associated with hs-cTn I, myoglobin levels, EO counts, WBC and NEU counts, LYM counts, and INR. Finally, in the 3rd wave, hs-cTn I, CK, EO counts, WBC and NEU counts, LYM counts, NLR and PLT counts, were also associated with the risk of death. Conclusion - This study provides useful information for prognostic evaluation that can be used to guide treatment and monitoring. Most importantly, it consists of valuable data that can be employed as the foundation of a variety of future research. Aside from the positive results, more research is needed to develop reliable and robust biomarkers for COVID-19’s outcomes.
- Discovery of delirium biomarkers through minimally invasive serum molecular fingerprintingPublication . Viegas, Ana; Araújo, Rúben; Ramalhete, Luís; Von Rekowski, Cristiana; Fonseca, Tiago A.; Bento, Luís; Calado, Cecília R.Delirium presents a significant clinical challenge, primarily due to its profound impact on patient outcomes and the limitations of the current diagnostic methods, which are largely subjective. During the COVID-19 pandemic, this challenge was intensified as the frequency of delirium assessments decreased in Intensive Care Units (ICUs), even as the prevalence of delirium among critically ill patients increased. The present study evaluated how the serum molecular fingerprint, as acquired by Fourier-Transform InfraRed (FTIR) spectroscopy, can enable the development of predictive models for delirium. A preliminary univariate analysis of serum FTIR spectra indicated significantly different bands between 26 ICU patients with delirium and 26 patients without, all of whom were admitted with COVID-19. However, these bands resulted in a poorly performing Naïve-Bayes predictive model. Considering the use of a Fast-Correlation-Based Filter for feature selection, it was possible to define a new set of spectral bands with a wider coverage of molecular functional groups. These bands ensured an excellent Naïve-Bayes predictive model, with an AUC, a sensitivity, and a specificity all exceeding 0.92. These spectral bands, acquired through a minimally invasive analysis and obtained rapidly, economically, and in a high-throughput mode, therefore offer significant potential for managing delirium in critically ill patients.
- Discovery of delirium biomarkers through minimally invasive serum molecular fingerprinting.Publication . Viegas, Ana; Araújo, Rúben; Ramalhete, Luís; Von Rekowski, Cristiana; Fonseca, Tiago AH; Bento, Luís; Calado, CecíliaDelirium presents a significant clinical challenge, primarily due to its profound impact on patient outcomes and the limitations of the current diagnostic methods, which are largely subjective. During the COVID-19 pandemic, this challenge was intensified as the frequency of delirium assessments decreased in Intensive Care Units (ICUs), even as the prevalence of delirium among critically ill patients increased. The present study evaluated how the serum molecular fingerprint, as acquired by Fourier-Transform InfraRed (FTIR) spectroscopy, can enable the development of predictive models for delirium. A preliminary univariate analysis of serum FTIR spectra indicated significantly different bands between 26 ICU patients with delirium and 26 patients without, all of whom were admitted with COVID-19. However, these bands resulted in a poorly performing Naïve-Bayes predictive model. Considering the use of a Fast-Correlation-Based Filter for feature selection, it was possible to define a new set of spectral bands with a wider coverage of molecular functional groups. These bands ensured an excellent Naïve-Bayes predictive model, with an AUC, a sensitivity, and a specificity all exceeding 0.92. These spectral bands, acquired through a minimally invasive analysis and obtained rapidly, economically, and in a high-throughput mode, therefore offer significant potential for managing delirium in critically ill patients.
- Early mortality prediction in intensive care unit patients based on serum metabolomicPublication . Araújo, Rúben; Ramalhete, Luís; Von Rekowski, Cristiana; Fonseca, Tiago AH; Bento, Luís; Calado, CecíliaPredicting mortality in intensive care units (ICUs) is essential for timely interventions and efficient resource use, especially during pandemics like COVID-19, where high mortality persisted even after the state of emergency ended. Current mortality prediction methods remain limited, especially for critically ill ICU patients, due to their dynamic metabolic changes and heterogeneous pathophysiological processes. This study evaluated how the serum metabolomic fingerprint, acquired through Fourier-Transform Infrared (FTIR) spectroscopy, could support mortality prediction models in COVID-19 ICU patients. A preliminary univariate analysis of serum FTIR spectra revealed significant spectral differences between 21 discharged and 23 deceased patients; however, the most significant spectral bands did not yield high-performing predictive models. By applying a Fast Correlation-Based Filter (FCBF) for feature selection of the spectra, a set of spectral bands spanning a broader range of molecular functional groups was identified, which enabled Naïve Bayes models with AUCs of 0.79, 0.97, and 0.98 for the first 48 h of ICU admission, seven days prior, and the day of the outcome, respectively, which are, in turn, defined as either death or discharge from the ICU. These findings suggest FTIR spectroscopy as a rapid, economical, and minimally invasive diagnostic tool, but further validation is needed in larger, more diverse cohorts.
- Early mortality prediction in intensive care unit patients based on serum metabolomic fingerprintPublication . Araújo, Rúben Alexandre Dinis; Ramalhete, Luís; Von Rekowski, Cristiana; Henrique Fonseca, Tiago Alexandre; Bento, Luís; Calado, CecíliaPredicting mortality in intensive care units (ICUs) is essential for timely interventions and efficient resource use, especially during pandemics like COVID-19, where high mortality persisted even after the state of emergency ended. Current mortality prediction methods remain limited, especially for critically ill ICU patients, due to their dynamic metabolic changes and heterogeneous pathophysiological processes. This study evaluated how the serum metabolomic fingerprint, acquired through Fourier-Transform Infrared (FTIR) spectroscopy, could support mortality prediction models in COVID-19 ICU patients. A preliminary univariate analysis of serum FTIR spectra revealed significant spectral differences between 21 discharged and 23 deceased patients; however, the most significant spectral bands did not yield high-performing predictive models. By applying a Fast-Correlation-Based Filter (FCBF) for feature selection of the spectra, a set of spectral bands spanning a broader range of molecular functional groups was identified, which enabled Naïve Bayes models with AUCs of 0.79, 0.97, and 0.98 for the first 48 h of ICU admission, seven days prior, and the day of the outcome, respectively, which are, in turn, defined as either death or discharge from the ICU. These findings suggest FTIR spectroscopy as a rapid, economical, and minimally invasive diagnostic tool, but further validation is needed in larger, more diverse cohorts.