Browsing by Author "Silva, Marta"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- A key role for microRNAs in the development and functional differentiation of γδ T cell subsetsPublication . Inácio, Daniel; Amado, Tiago; Sobral, Daniel; Cunha, Carolina; Silva, Marta; Pamplona, Ana; Enguita, Francisco; Gomes, Anita Q.; Silva-Santos, BrunoThe ability of murine γδ T cells to rapidly produce the pro-inflammatory cytokines interleukin-17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial roles in several (patho)physiological contexts. This capacity stems from a complex thymic process of ‘developmental pre-programming’, after which a large fraction of γδ T cells migrates to peripheral sites already committed to producing IL-17 or IFN-γ. We have previously found that miR-146a maintains the cell identity of peripheral IL-17-committed gδ T cells by inhibiting IFN-g production. To further address the role of microRNAs in γδ T cell differentiation, we isolated pure IL-17+ and IFN-γ+ γδ T cell populations from the peripheral lymphoid organs of a double reporter IL-17-GFP: IFN-γ-YFP mouse strain to perform small RNA-sequencing. This allowed us to identify distinct microRNA signatures associated with cytokine expression in γδ T cells, from which we selected ten microRNAs differentially expressed between IL-17+ and IFN-γ+ subsets to further characterize. We first analyzed the expression pattern of each candidate microRNA in γδ T cell subsets throughout mouse ontogeny and upon gain-of-function studies in in vitro γδ T cell cultures. Our results indicate that while some microRNAs regulate γδ T cell development in the thymus, other candidates modulate their peripheral effector functions. More specifically, using a miR-181a deficient mouse model, we have found that miR-181a, highly expressed in immature γδ T cell subsets in the thymus, shifts the IL-17/IFN-γ balance towards the IL-17-pathway in neonatal life, which is further maintained in the periphery during adult life. On the other hand, miR-7a-5p and miR-139-5p, overexpressed in peripheral IFN-g+ γδ T cells, regulate peripheral γδ T cell effector functions, either promoting functional plasticity or acting as an IFN-γ auto-repressor, respectively. Finally, miR-322-5p and miR-450b-3p, overexpressed in IL-17+ γδ T cells, may have therapeutic potential by modulating IFN-γ levels, which are critical in anti-tumoral and antiviral responses.
- A key role for microRNAs in the development and functional differentiation of γδ T cell subsetsPublication . Inácio, Daniel; Amado, Tiago; Sobral, Daniel; Cunha, Carolina; Silva, Marta; Pamplona, Ana; Enguita, Francisco; Gomes, Anita Q.; Silva-Santos, BrunoThe ability of murine γδ T cells to rapidly produce the pro-inflammatory cytokines interleukin-17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial roles in several (patho)physiological contexts. This capacity stems from a complex process of ‘developmental pre-programming’ in the thymus, after which a large fraction of γδ T cells migrate to peripheral sites already committed to producing either IL-17 or IFN-γ. To globally address the role of microRNAs in effector γδ T cell differentiation, we established a double reporter IL-17-GFP: IFN-γ-YFP mouse strain and isolated pure IL-17+ and IFN-γ+ γδ T cell populations from peripheral lymphoid organs to perform small RNA-sequencing. This allowed us to identify distinct microRNA signatures associated with cytokine expression in γδ T cells, from which we selected ten candidate microRNAs differentially expressed between IL-17+ and IFN-γ+ γδ T cells to functionally study further. Our results indicate that while some microRNAs, such as miR-128-3p and miR181a-5p, regulate γδ T cell development in the thymus, other candidates, including miR-7a-5p, miR-139-5p, miR-322-5p, and miR-450b-3p, modulate peripheral γδ T cell effector functions. Furthermore, using a miR-181a deficient mouse model, we have demonstrated that miR-181a, highly expressed in immature γδ T cell subsets in the thymus, shifts the in vivo IL-17/IFN-γ balance towards the IL-17 pathway in the neonatal thymus, which is further maintained in the periphery during adult life. These data demonstrate the impact of microRNAs on the development, differentiation, and functional identity of effector γδ T cell subsets, which may open new avenues for their manipulation in disease settings.
- A key role for microRNAs in the development and functional differentiation of γδ T cell subsetsPublication . Inácio, Daniel; Amado, Tiago; Silva, Marta; Sobral, Daniel; Cunha, Carolina; Pamplona, Ana; Enguita, Francisco; Gomes, Anita Q.; Silva-Santos, BrunoThe ability of murine γδ T cells to rapidly produce the pro-inflammatory cytokines interleukin 17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial roles in several (patho)physiological contexts. This capacity stems from a complex process of ‘developmental pre-programming in the thymus, after which a large fraction of γδ T cells migrate to peripheral sites already committed to producing either the IL-17 or IFN-γ. We have previously found that one microRNA, miR-146a, maintains peripheral γδ T cell identity by inhibiting IFN-g production by the IL-17-committed CD27− gδ T cell subset. To further and more globally address the role of microRNAs in effector γδ T cell differentiation, we established a double reporter IL17-GFP:IFN-γ-YFP mouse strain and isolated pure IL-17+ and IFN-γ+ γδ T cell populations from the peripheral lymphoid organs to perform small RNA-sequencing. This allowed us to identify clearly distinct microRNA signatures associated with cytokine expression in γδ T cells, from which we selected ten candidate microRNAs differentially expressed between IL-17+ and IFN-γ+ γδ T cells to study further. We characterized the detailed expression pattern of each candidate microRNA in γδ T cell subsets throughout mouse ontogeny and upon gain-of-function studies in in vitro cultures of γδ T cells. Our results indicate that while some microRNAs, such as miR-128-3p and miR181a-5p, regulate γδ T cell development in the thymus, other candidates, including miR-7a-5p, miR-139-5p, miR-322-5p, and miR-450b-3p, modulate peripheral γδ T cell effector functions. More specifically, using a miR-181a deficient mouse model, we have found that miR-181a, highly expressed in immature γδ T cell subsets in the thymus, shifts the in vivo IL-17/IFN-γ balance towards the IL-17 pathway in neonatal life, which is further maintained in the periphery during adult life. On the other hand, miR-7a-5p and miR-139-5p, overexpressed in peripheral IFN-g+ γδ T cells, regulate peripheral γδ T cell effector functions, either acting as an IFN-γ auto-repressor (miR-139-5p) or promoting functional plasticity (miR-7a-5p). Finally, miR-322-5p and miR-450b-3p, overexpressed in IL-17+ γδ T cells, may have therapeutic potential by modulating the production of IFNγ, whose levels are critical in anti-tumoral and anti-viral responses. These data demonstrate the impact of microRNAs on the differentiation and functional identity of effector γδ T cell subsets, which may open new avenues for their manipulation in disease settings.
- A key role for microRNAs in the development and functional differentiation of γδ T cell subsetsPublication . Inácio, Daniel; Amado, Tiago; Silva, Marta; Sobral, Daniel; Cunha, Carolina; Enguita, Francisco; Pamplona, Ana; Gomes, Anita Q.; Silva-Santos, BrunoThe ability of murine γδ T cells to rapidly produce the pro-inflammatory cytokines interleukin-17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial roles in several (patho)physiological contexts. This capacity stems from a complex thymic process of ‘developmental pre-programming’, after which a large fraction of γδ T cells migrate to peripheral sites already committed to producing IL-17 or IFN-γ. We have previously found that miR-146a maintains the cell identity of peripheral IL-17-committed gδ T cells by inhibiting IFN-g production. To further address the role of microRNAs in γδ T cell differentiation, we isolated pure IL-17+ and IFN-γ+ γδ T cell populations from the peripheral lymphoid organs of a double reporter IL-17-GFP:IFN-γ-YFP mouse strain to perform small RNA-sequencing. This allowed us to identify distinct microRNA signatures associated with cytokine expression in γδ T cells, from which we selected ten microRNAs differentially expressed between IL-17+ and IFN-γ+ subsets to further characterise. We first analyzed the expression pattern of each candidate microRNA in γδ T cell subsets throughout mouse ontogeny and upon gain-of-function studies in in vitro γδ T cell cultures. Our results indicate that while some microRNAs regulate γδ T cell development in the thymus, other candidates modulate their peripheral effector functions. More specifically, using a miR-181a deficient mouse model, we have found that miR-181a, highly expressed in immature γδ T cell subsets in the thymus, shifts the IL-17/IFN-γ balance towards the IL-17-pathway in neonatal life, which is further maintained in the periphery during adult life. On the other hand, miR-7a-5p and miR-139-5p, overexpressed in peripheral IFN-g+ γδ T cells, regulate peripheral γδ T cell effector functions, either promoting functional plasticity or acting as an IFN-γ auto-repressor, respectively. Finally, miR-322-5p and miR-450b-3p, overexpressed in IL-17+ γδ T cells, may have therapeutic potential by modulating IFN-γ levels, which are critical in anti-tumoral and antiviral responses.
- microRNAs are key regulators of the development and functional differentiation of γδ T cell subsetsPublication . Inácio, Daniel; Amado, Tiago; Silva, Marta; Sobral, Daniel; Cunha, Carolina; Enguita, Francisco; Pamplona, Ana; Gomes, Anita Q.; Silva-Santos, BrunoThe ability of murine γδ T cells to rapidly produce the pro-inflammatory cytokines interleukin-17 (IL-17) or interferon-γ (IFN-γ) underlies their crucial and non-redundant roles in several (patho)physiological contexts, such as tissue homeostasis, infection, autoimmunity and cancer. This capacity stems from a complex process of ‘developmental pre-programming’ in the thymus, after which a large fraction of γδ T cells migrate to peripheral sites already committed to producing IL-17 or IFN-γ, unlike their ab T cell counterparts1. So far, several miRNAs have been implied in the control of the differentiation and IFN-γ and IL-17 levels by ab Th1 and Th17 cells, respectively2. However, little is known about the action of these post-transcriptional regulators on γδ T cell differentiation. Schmolka et al. showed that miR-146a is selectively enriched in IL-17-biased CD27- γδ T cells and restricts their co-production of IFN-γ by targeting Nod1 mRNA, therefore regulating γδ T cell plasticity3. This isolated work illustrates the need of a more comprehensive study of the miRNA repertoires of γδ T cells and of the regulatory networks they take part in the control of IFN-γ and IL-17 production by these cells.
- Uso de um BCI para a medição dos níveis de atençãoPublication . Teixeira, Ana Rita; Mendes, António José; Silva, Marta; Gomes, AnabelaO uso das BCI’s no estudo dos níveis de atenção tem sido amplamente descrito na literatura. Este artigo estuda os níveis de atenção durante a condução de veículos e a realização concomitante de tarefas paralelas, usando uma BCI Neurosky Mindset. Este estudo preliminar pretende determinar se o Mindset pode ser usado como ferramenta na caracterização dos níveis de atenção durante a execução de diversas tarefas quotidianas. Os resultados da avaliação Neurosky Mindset sugerem uma relação entre os níveis de Atenção medidos e os auto-relatados pelos próprios utilizadores. No entanto, trata-se apenas de um estudo inicial que pretende ser alargado num futuro próximo, em termos de dimensão e características da amostra, tipo de tarefas e dispositivos utilizados. A intenção futura será a de extrair parâmetros como níveis de excitação ou frustração, atenção, sonolência ou condições geradoras de stress durante atividades de programação, sendo o objetivo principal o de caracterizar vários perfis de aprendizagem.
