Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.16 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
O presente relatório final desenvolveu-se no âmbito da unidade curricular de Prática de Ensino Supervisionada II, do Mestrado em Ensino do 1.º Ciclo do Ensino Básico (CEB) e de Matemática e Ciências Naturais no 2.º CEB e está dividido em duas partes. A primeira parte dedica-se à descrição e análise da Prática Pedagógica desenvolvida em ambos os ciclos e a segunda parte apresenta o estudo realizado numa turma de 4.º ano, na área da Matemática, com o tema “A importância da flexibilidade no uso de representações de números racionais na resolução de problemas”.
Esta investigação tem como objetivo geral descrever e compreender a flexibilidade no uso de representações de números racionais na resolução de problemas. De acordo com o objetivo geral estão as questões de investigação: (i) Que representações mobilizam os alunos na resolução de problemas?; (ii) Como é que os alunos usam, de forma flexível, as diferentes representações de números racionais?; (iii) Quais os contributos do reconhecimento da unidade para o uso flexível de representações?; e (iv) Quais as características dos problemas, propostos nesta investigação, que parecem promover a flexibilização entre representações?.
O estudo seguiu uma metodologia de natureza qualitativa, mais propriamente o estudo de caso de uma turma de 4.º ano, onde foram resolvidos três problemas que promoviam o uso flexível de representações de números racionais. As técnicas de recolha de dados utilizadas foram a análise documental e a observação direta participante e como técnica de análise de dados foi utilizada a análise de conteúdo.
Os resultados do estudo permitiram concluir que os alunos mobilizam, sobretudo, as representações simbólicas, mais concretamente, a fração e a percentagem; recorrem, sobretudo, a números de referência, à decomposição do número e a procedimentos já utilizados para realizarem a flexibilização das diferentes representações. O reconhecimento da unidade contribui para apoiar as movimentações entre representações e que os problemas propostos parecem ter promovido o uso flexível de representações de números racionais, pois apresentavam, no enunciado, representações de números de referência ou facilmente compostos/decompostos em números de referência e possibilitaram diferentes formas de resolução.
ABSTRACT This final report was developed within the curricular unit of Supervised Teaching Practice II, the master’s degree in Teaching of the 1st Cycle of Basic Education (CBE) and Mathematics and Natural Sciences in the 2nd CBE and is divided into two parts. The first part is dedicated to the description and analysis of pedagogical practice developed in both cycles and the second part presents the study conducted in a 4th grade class in mathematics, with the theme "The importance of flexibility in the use of representations of rational numbers in problem solving". This investigation has as general objective to describe and understand the flexibility in the use of representations of rational numbers in problem solving. According to the general objective are the research questions: (i) What representations use students in problem solving?; (ii) How do students flexibly use the different representations of rational numbers?; (iii) What are the contributions of unit recognition for the flexible use of representations?; and (iv) What are the characteristics of the problems, proposed in this investigation, that seem to promote the flexibilization between representations?. The study followed a qualitative methodology, more specifically the case study of a 4th grade class, where three problems were solved that promoted the flexible use of representations of rational numbers. The data collection techniques used were documental analysis and participant direct observation and content analysis was used as a data analysis technique. The results of the study allowed us to conclude that the students mobilize, above all, the symbolic representations, more specifically, the fraction and the percentage; they use, above all, reference numbers, the decomposition of the number and the procedures already used to make the different representations more flexible. The recognition of the unit contributes to support the movements between representations and that the proposed problems seem to have promoted the flexible use of representations of rational numbers, because they presented, in the utterance, representations of reference numbers or easily composed/decomposed in reference numbers and allowed different forms of resolution.
ABSTRACT This final report was developed within the curricular unit of Supervised Teaching Practice II, the master’s degree in Teaching of the 1st Cycle of Basic Education (CBE) and Mathematics and Natural Sciences in the 2nd CBE and is divided into two parts. The first part is dedicated to the description and analysis of pedagogical practice developed in both cycles and the second part presents the study conducted in a 4th grade class in mathematics, with the theme "The importance of flexibility in the use of representations of rational numbers in problem solving". This investigation has as general objective to describe and understand the flexibility in the use of representations of rational numbers in problem solving. According to the general objective are the research questions: (i) What representations use students in problem solving?; (ii) How do students flexibly use the different representations of rational numbers?; (iii) What are the contributions of unit recognition for the flexible use of representations?; and (iv) What are the characteristics of the problems, proposed in this investigation, that seem to promote the flexibilization between representations?. The study followed a qualitative methodology, more specifically the case study of a 4th grade class, where three problems were solved that promoted the flexible use of representations of rational numbers. The data collection techniques used were documental analysis and participant direct observation and content analysis was used as a data analysis technique. The results of the study allowed us to conclude that the students mobilize, above all, the symbolic representations, more specifically, the fraction and the percentage; they use, above all, reference numbers, the decomposition of the number and the procedures already used to make the different representations more flexible. The recognition of the unit contributes to support the movements between representations and that the proposed problems seem to have promoted the flexible use of representations of rational numbers, because they presented, in the utterance, representations of reference numbers or easily composed/decomposed in reference numbers and allowed different forms of resolution.
Description
Relatório de Prática de Ensino Supervisionada apresentado à Escola Superior de Educação de Lisboa para
obtenção de grau de mestre em Ensino do 1.º Ciclo do Ensino Básico e de Matemática e Ciências Naturais
no 2.º Ciclo do Ensino Básico
Keywords
Representação Número racional Flexibilização Resolução de problemas. Representation Rational number Flexibilization Problem solving
Citation
Conceição, A. B. L. (2021). A importância da flexibilidade no uso de representações de números racionais na resolução de problemas (Dissertação de mestrado não publicada). Instituto Politécnico de Lisboa, Escola Superior de Educação, Lisboa Disponível em: http://hdl.handle.net/10400.21/14401