Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Comparison of analytical methods of serum untargeted metabolomics
    Publication . Fonseca, Tiago AH; Araújo, Rúben; Von Rekowski, Cristiana; Justino, Gonçalo C.; Oliveira, Maria Da Conceiçao; Bento, Luís; Calado, Cecília
    Metabolomics has emerged as a powerful tool in the discovery of new biomarkers for medical diagnosis and prognosis. However, there are numerous challenges, such as the methods used to characterize the system metabolome. In the present work, the comparison of two analytical platforms to acquire the serum metabolome of critically ill patients was conducted. The untargeted serum metabolome analysis by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) enabled to identify a set of metabolites statistically different between deceased and discharged patients. This set of metabolites also enabled to develop a very good predictive model, based on linear discriminant analysis (LDA) with a sensitivity and specificity of 80% and 100%, respectively. Fourier Transform Infrared (FTIR) spectroscopy was also applied in a high-throughput, simple and rapid mode to analyze the serum metabolome. Despite this technique not enabling the identification of metabolites, it allowed to identify molecular fingerprints associated to each patient group, while leading to a good predictive model, based on principal component analysis-LDA, with a sensitivity and specificity of 100% and 90%, respectively. Therefore, both analytical techniques presented complementary characteristics, that should be further explored for metabolome characterization and application as for biomarkers discovery for medical diagnosis and prognosis.
  • The Impact of the Serum Extraction Protocol on Metabolomic Profiling Using UPLC-MS/MS and FTIR Spectroscopy
    Publication . Fonseca, Tiago AH; Von Rekowski, Cristiana; Araújo, Rúben; Oliveira, Maria Da Conceiçao; Justino, Gonçalo C.; Bento, Luís; Calado, Cecília
    Biofluid metabolomics is a very appealing tool to increase the knowledge associated with pathophysiological mechanisms leading to better and new therapies and biomarkers for disease diagnosis and prognosis. However, due to the complex process of metabolome analysis, including the metabolome isolation method and the platform used to analyze it, there are diverse factors that affect metabolomics output. In the present work, the impact of two protocols to extract the serum metabolome, one using methanol and another using a mixture of methanol, acetonitrile, and water, was evaluated. The metabolome was analyzed by ultraperformance liquid chromatography associated with tandem mass spectrometry (UPLC-MS/MS), based on reverse-phase and hydrophobic chromatographic separations, and Fourier transform infrared (FTIR) spectroscopy. The two extraction protocols of the metabolome were compared over the analytical platforms (UPLC-MS/MS and FTIR spectroscopy) concerning the number of features, the type of features, common features, and the reproducibility of extraction replicas and analytical replicas. The ability of the extraction protocols to predict the survivability of critically ill patients hospitalized at an intensive care unit was also evaluated. The FTIR spectroscopy platform was compared to the UPLC-MS/MS platform and, despite not identifying metabolites and consequently not contributing as much as UPLC-MS/MS in terms of information concerning metabolic information, it enabled the comparison of the two extraction protocols as well as the development of very good predictive models of patient’s survivability, such as the UPLC-MS/MS platform. Furthermore, FTIR spectroscopy is based on much simpler procedures and is rapid, economic, and applicable in the high-throughput mode, i.e., enabling the simultaneous analysis of hundreds of samples in the microliter range in a couple of hours. Therefore, FTIR spectroscopy represents a very interesting complementary technique not only to optimize processes as the metabolome isolation but also for obtaining biomarkers such as those for disease prognosis.