Loading...
9 results
Search Results
Now showing 1 - 9 of 9
- High scale impact in alignment and decoupling in two-Higgs-doublet modelsPublication . Basler, Philipp; Ferreira, Pedro Miguel; Muehlleitner, Milada Margarete; Santos, RuiThe two-Higgs-doublet model (2HDM) provides an excellent benchmark to study physics beyond the Standard Model (SM). In this work, we discuss how the behavior of the model at high-energy scales causes it to have a scalar with properties very similar to those of the SM-which means the 2HDM can be seen to naturally favor a decoupling or alignment limit. For a type II 2HDM, we show that requiring the model to be theoretically valid up to a scale of 1 TeV, by studying the renormalization group equations (RGE) of the parameters of the model, causes a significant reduction in the allowed magnitude of the quartic couplings. This, combined with B-physics bounds, forces the model to be naturally decoupled. As a consequence, any nondecoupling limits in type II, like the wrong-sign scenario, are excluded. On the contrary, even with the very constraining limits for the Higgs couplings from the LHC, the type I model can deviate substantially from alignment. An RGE analysis similar to that made for type II shows, however, that requiring a single scalar to be heavier than about 500 GeV would be sufficient for the model to be decoupled. Finally, we show that the 2HDM is stable up to the Planck scale independently of which of the CP-even scalars is the discovered 125 GeV Higgs boson.
- Are there hidden scalars in LHC Higgs results?Publication . Arhrib, A.; Ferreira, Pedro Miguel; Santos, RuiThe Higgs boson recently discovered at the Large Hadron Collider has shown to have couplings to the remaining particles well within what is predicted by the Standard Model. The search for other new heavy scalar states has so far revealed to be fruitless, imposing constraints on the existence of new scalar particles. However, it is still possible that any existing heavy scalars would preferentially decay to final states involving the light Higgs boson thus evading the current LHC bounds on heavy scalar states. Moreover, decays of the heavy scalars could increase the number of light Higgs bosons being produced. Since the number of light Higgs bosons decaying to Standard Model particles is within the predicted range, this could mean that part of the light Higgs bosons could have their origin in heavy scalar decays. This situation would occur if the light Higgs couplings to Standard Model particles were reduced by a concomitant amount. Using a very simple extension of the SM - the two-Higgs doublet model we show that in fact we could already be observing the effect of the heavy scalar states even if all results related to the Higgs are in excellent agreement with the Standard Model predictions.
- Benchmarking di-Higgs production in various extended Higgs sector modelsPublication . Abouabid, Hamza; Arhrib, Abdesslam; Azevedo, Duarte; Falaki, Jaouad El; Ferreira, Pedro Miguel; Muhlleitner, Milada; Santos, RuiWe present a comprehensive study on Higgs pair production in various archetypical extended Higgs sectors such as the real and the complex 2-Higgs-Doublet Model, the 2-Higgs-Doublet Model augmented by a real singlet field and the Next-to-Minimal Supersymmetric extension of the Standard Model. We take into account all relevant theoretical and experimental constraints, in particular the experimental limits on non-resonant and resonant Higgs pair production. We present the allowed cross sections for Standard Model (SM)-like Higgs pair production and the ranges of the SM-like Yukawa and trilinear Higgs self-coupling that are still compatible with the applied constraints. Furthermore, we give results for the pair production of a SM-like with a non-SM-like Higgs boson and for the production of a pair of non-SM-like Higgs bosons. We find that di-Higgs production in the models under investigation can exceed the SM rate substantially, not only in the non-resonance region but also due to resonant enhancement. We give several benchmarks with interesting features such as large cross sections, the possibility to test CP violation, Higgs-to-Higgs cascade decays or di-Higgs production beating single Higgs production. In all of our benchmark points, the next-to-leading order QCD corrections are included in the large top-mass limit. For these points, we found that, depending on the model and the Higgs pair final state, the corrections increase the leading order cross section by a factor of 1.79 to 2.24. We also discuss the relation between the description of Higgs pair production in an effective field theory approach and in the specific models investigated here
- Probing wrong-sign Yukawa couplings at the LHC and a future linear colliderPublication . Ferreira, Pedro Miguel; Santos, Rui; Gunion, John F.; Haber, HowardWe consider the two-Higgs-doublet model as a framework in which to evaluate the viability of scenarios in which the sign of the coupling of the observed Higgs boson to down-type fermions (in particular, b-quark pairs) is opposite to that of the Standard Model (SM), while at the same time all other tree-level couplings are close to the SM values. We show that, whereas such a scenario is consistent with current LHC observations, both future running at the LHC and a future e(+)e(-) linear collider could determine the sign of the Higgs coupling to b-quark pairs. Discrimination is possible for two reasons. First, the interference between the b-quark and the t-quark loop contributions to the ggh coupling changes sign. Second, the charged-Higgs loop contribution to the gamma gamma h coupling is large and fairly constant up to the largest charged-Higgs mass allowed by tree-level unitarity bounds when the b-quark Yukawa coupling has the opposite sign from that of the SM (the change in sign of the interference terms between the b-quark loop and the W and t loops having negligible impact).
- Models with extended Higgs sectors at future e(+)e(-) collidersPublication . Azevedo, Duarte; Ferreira, Pedro Miguel; Muehlleitner, Milada Margarete; Santos, Rui; Wittbrodt, JonasWe discuss the phenomenology of several beyond the Standard Model (SM) extensions that include extended Higgs sectors. The models discussed are the SM extended by a complex singlet field, the 2-Higgs-doublet model with a CP-conserving and a CP-violating scalar sector, the singlet extension of the 2-Higgs-doublet model, and the next-to-minimal supersymmetric SM extension. All the above models have at least three neutral scalars, with one being the 125 GeV Higgs boson. This common feature allows us to compare the production and decay rates of the other two scalars and therefore to compare their behavior at future electron-positron colliders. Using predictions on the expected precision of the 125 GeV Higgs boson couplings at these colliders we are able to obtain the allowed admixtures of either a singlet or a pseudoscalar to the observed 125 GeV scalar. Therefore, even if no new scalar is found, the expected precision at future electron-positron colliders, such as CLIC, will certainly contribute to a clearer picture of the nature of the discovered Riggs boson.
- Vacuum structure of the Z(2) symmetric Georgi-Machacek modelPublication . Azevedo, Duarte; Ferreira, Pedro Miguel; Logan, Heather E.; Santos, RuiWe discuss the vacuum structure of a version of the Georgi-Machecek model with an exact Z(2) symmetry acting on the triplet fields. Besides the usual custodial-symmetric model, with rho = 1 at tree-level, a model with a dark matter candidate is also viable. The other phases of the model lead to electric charge breaking, a wrong pattern of electroweak symmetry breaking or to rho not equal 1 at tree-level. We derive conditions to have an absolute minimum in each of the two viable phases, the custodial and the dark matter phases.
- CP in the darkPublication . Azevedo, Duarte; Ferreira, Pedro Miguel; Muhlleitner, Milada; Patel, Shruti; Santos, Rui; Wittbrodt, JonasWe build a model containing two scalar doublets and a scalar singlet with a specific discrete symmetry. After spontaneous symmetry breaking, the model has Standard Model-like phenomenology, as well as a hidden scalar sector which provides a viable dark matter candidate. We show that CP violation in the scalar sector occurs exclusively in the hidden sector, and consider possible experimental signatures of this CP violation. In particular, we study contribution to anomalous gauge couplings from the hidden scalars.
- Wrong sign and symmetric limits and non-decoupling in 2HDMsPublication . Ferreira, Pedro Miguel; Guedes, Renato; Sampaio, Marco O. P.; Santos, RuiWe analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These wrong signs can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the symmetric limit, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1 sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tan beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.
- The dark phases of the N2HDMPublication . Engeln, Isabell; Ferreira, Pedro Miguel; Muehlleitner, Milada Margarete; Santos, Rui; Wittbrodt, JonasWe discuss the dark phases of the Next-to-2-Higgs Doublet model. The model is an extension of the Standard Model with an extra doublet and an extra singlet that has four distinct CP-conserving phases, three of which provide dark matter candidates. We discuss in detail the vacuum structure of the different phases and the issue of stability at tree-level of each phase. Taking into account the most relevant experimental and theoretical constraints, we found that there are combinations of measurements at the Large Hadron Collider that could single out a specific phase. The measurement of h(125) -> gamma gamma together with the discovery of a new scalar with specific rates to tau (+)tau (-) or gamma gamma could exclude some phases and point to a specific phase.