Repository logo
 

Search Results

Now showing 1 - 4 of 4
  • Assessing static and dynamic response variability due to parametric uncertainty on fibre-reinforced composites
    Publication . Carvalho, Alda; Silva, Tiago A. N.; Loja, M.A.R.
    Composite structures are known for their ability to be tailored according to specific operating requisites. Therefore, when modelling these types of structures or components, it is important to account for their response variability, which is mainly due to significant parametric uncertainty compared to traditional materials. The possibility of manufacturing a material according to certain needs provides greater flexibility in design but it also introduces additional sources of uncertainty. Regardless of the origin of the material and/or geometrical variabilities, they will influence the structural responses. Therefore, it is important to anticipate and quantify these uncertainties as much as possible. With the present work, we intend to assess the influence of uncertain material and geometrical parameters on the responses of composite structures. Behind this characterization, linear static and free vibration analyses are performed considering that several material properties, the thickness of each layer and the fibre orientation angles are deemed to be uncertain. In this study, multivariable linear regression models are used to model the maximum transverse deflection and fundamental frequency for a given set of plates, aiming at characterizing the contribution of each modelling parameter to the explanation of the response variability. A set of simulations and numerical results are presented and discussed.
  • Assessing the influence of material and geometrical uncertainty on the mechanical behavior of functionally graded material plates
    Publication . Carvalho, Alda; Silva, Tiago; Loja, Amélia; Damásio, Fábio Raimundo
    Composite materials possessing a functional gradient are becoming strong candidates to enhance the performance of structures when severe operating conditions are a reality. These types of conditions may, for example, range from situations where a high thermal gradient is present to others where it is imperative to minimize abrupt stresses transitions between material interfaces. The manufacturing achievement of the gradients determined for a specific application may in practice face some limitations, which can be due, among other factors, to technological process constraints, eventual operating condition deterioration of production stages, or to nonconforming raw materials. Regardless of the origin of such limitations, the reality is that the uncertainty is always present to some extent; this is clearly reflected in the scattering of material and geometrical properties of these composites. The understanding that deterministic analyses are not enough to provide a complete prediction of the composite structures’ behavior emphasizes the crucial need to identify the effects that the variability in material and geometrical parameters will produce in the structural response.With the presentwork, one intends to study the influence of this variability in the static and free vibrations behavior of functionally graded plates. It is also an objective of this study to use regression models to predict these responses and to characterize the contribution of each model parameter to the explanation of the response variability. To this purpose, a set of numerical results is presented and discussed.
  • Assessing static and dynamic response variability due to parametric uncertainty on fibre-reinforced composites
    Publication . Carvalho, Alda; Silva, Tiago A. N.; Ramos Loja, M.A.
    Composite structures are known for their ability to be tailored according to specific operating requisites. Therefore, when modelling these types of structures or components, it is important to account for their response variability, which is mainly due to significant parametric uncertainty compared to traditional materials. The possibility of manufacturing a material according to certain needs provides greater flexibility in design but it also introduces additional sources of uncertainty. Regardless of the origin of the material and/or geometrical variabilities, they will influence the structural responses. Therefore, it is important to anticipate and quantify these uncertainties as much as possible. With the present work, we intend to assess the influence of uncertain material and geometrical parameters on the responses of composite structures. Behind this characterization, linear static and free vibration analyses are performed considering that several material properties, the thickness of each layer and the fibre orientation angles are deemed to be uncertain. In this study, multivariable linear regression models are used to model the maximum transverse deflection and fundamental frequency for a given set of plates, aiming at characterizing the contribution of each modelling parameter to the explanation of the response variability. A set of simulations and numerical results are presented and discussed.
  • Adaptive empirical distributions in the framework of inverse problems
    Publication . Silva, Tiago; Loja, Amélia; Carvalho, Alda; Maia, Nuno. M.; Barbosa, Joaquim
    This article presents an innovative framework regarding an inverse problem. One presents the extension of a global optimization algorithm to estimate not only an optimal set of modeling parameters, but also their optimal distributions. Regarding its characteristics, differential evolution algorithm is used to demonstrate this extension, although other population-based algorithms may be considered. The adaptive empirical distributions algorithm is here introduced for the same purpose. Both schemes rely on the minimization of the dissimilarity between the empirical cumulative distribution functions of two data sets, using a goodness-of-fit test to evaluate their resemblance.