Logo do repositório
 
Miniatura indisponível
Publicação

Adaptive empirical distributions in the framework of inverse problems

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Adaptive_MARLoja_ADEM.pdf1.92 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

This article presents an innovative framework regarding an inverse problem. One presents the extension of a global optimization algorithm to estimate not only an optimal set of modeling parameters, but also their optimal distributions. Regarding its characteristics, differential evolution algorithm is used to demonstrate this extension, although other population-based algorithms may be considered. The adaptive empirical distributions algorithm is here introduced for the same purpose. Both schemes rely on the minimization of the dissimilarity between the empirical cumulative distribution functions of two data sets, using a goodness-of-fit test to evaluate their resemblance.

Descrição

Palavras-chave

Adaptive empirical distributions Differential evolution Empirical CDF Inverse problem Inverse sampling Two samples Kolmogorov-Smirnov goodness-of-fit test

Contexto Educativo

Citação

SILVA, Tiago A. N.; [et al] – Adaptive empirical distributions in the framework of inverse problems. International Journal for Computational Methods in Engineering Science & Mechanics. ISSN 1550-2287. Vol. 18, N.º 6 (2017), pp. 277-291

Projetos de investigação

Projeto de investigaçãoVer mais
Projeto de investigaçãoVer mais

Unidades organizacionais

Fascículo

Editora

Taylor & Francis

Licença CC

Métricas Alternativas