Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- Study of antioxidant and antitumoral activity of cork processing wastewaters components fractionated by ultrafiltration membranesPublication . Gomes, Luís; Borges, C.; Serralheiro, M.L.M.; Pacheco, Rita; Minhalma, MiguelCork processing wastewater present a severe environmental problem due to its high content in organic matter, such as sugars and non-biodegradable compounds like polyphenols (PPs), namely tannins. In this work, the assessment of the biological activity and identification of valuable polyphenolic compounds was envisaged. These compounds were obtained using membrane technology, leading to the valorisation of the wastewater components and simultaneously leading to the decrease of its pollutant content.
- The ultrafiltration performance of cellulose acetate asymmetric membranes: a new perspective on the correlation with the infrared spectraPublication . Figueiredo, Ana Sofia; Garcia, Ana Rosa; Minhalma, Miguel; ILHARCO, LAURA; Pinho, Maria deIntegral asymmetric cellulose acetate (CA) membranes were casted by phase-inversion with formamide varying content - 22, 30 and 34% - as pore promoter. These membranes, CA-22, CA-30 and CA-34, were analyzed by infrared spectroscopy in attenuated total reflection mode (ATR-FTIR) to investigate the porous membrane matrix influence on the polymer/water/solute interactions and the selective ultrafiltration of salts. The membranes covered a wide range of hydraulic permeabilities, from 3.5 to 81.0 kg.m-2.h-1.bar-1, and of molecular weight cut-offs, from 4.17 to 31.43 kDa. The experimental apparent rejection coefficients of neutral solutes of increasing molecular weight are related to their intrinsic rejection coefficients through the film model. The surface average pore radius, estimated by an iterative algorithm, ranges from 2.1 to 4.5 nm. The tighter membrane, CA-22, displays experimental apparent rejection coefficients to the Na2SO4, CaSO4, MgSO4 of 50% or higher values and this is in contrast with the lower values, between 14 and 18%, to the NaCl, CaCl2 and MgCl2 salts. The ATR-FTIR evidences that in the membranes with larger pores, CA-30 and CA-34, the water molecules are organized with a liquid-water-like structure, in which most molecules are hydrogen bonded to four or to two others; nevertheless, a fraction of water molecules is strongly bonded to the CA carbonyl groups. For the CA-22 membrane, there are more free carbonyl groups and a larger fraction of free water, both able to interact with solutes, such as the hydrated sulphate ions. Therefore, this ultrafiltration membrane has the capability of differentiating anionic species.
- Nanofiltration of surface water for the removal of endocrine disruptorsPublication . Salvaterra, Ana Filipa; Sarmento, Georgina; Minhalma, Miguel; de Pinho, Maria NorbertaThe assessment of surface water nanofiltration (NF) for the removal of endocrine disruptors (EDs) Nonylphenol Ethoxylate (IGEPAL), 4-Nonylphenol (NP) and 4-Octylphenol (OP) was carried out with three commercial NF membranes - NF90, NF200, NF270. The permeation experiments were conducted in laboratory flat-cell units of 13.2 x 10(-4) m(2) of surface area and in a DSS Lab-unit M20 with a membrane surface area of 0.036 m2. The membranes hydraulic permeabilities ranged from 3.7 to 15.6 kg/h/m(2)/bar and the rejection coefficients to NaCl, Na2SO4 and Glucose are for NF90: 97%, 99% and 97%, respectively; for NF200: 66%, 98% and 90%, respectively and for NF270: 48%, 94% and 84%, respectively. Three sets of nanofiltration experiments were carried out: i) NF of aqueous model solutions of NP, IGEPAL and OP running in total recirculation mode; ii) NF of surface water from Rio Sado (Settibal, Portugal) running in concentration mode; iii) NF of surface water from Rio Sado inoculated with NP, IGEPAL and OP running in concentration mode. The results of model solutions experiments showed that the EDs rejection coefficients are approximately 100% for all the membranes. The results obtained for the surface water showed that the rejection coefficients to natural organic Matter (NOM) are 94%, 82% and 78% for NF90, NF200 and NF 270 membranes respectively, with and without inoculation of EDs. The rejection coefficients to EDs in surface water with and without inoculation of EDs are 100%, showing that there is a fraction of NOM of high molecular weight that retains the EDs in the concentrate and that there is a fraction of NOM of low molecular weight that permeates through the NF membranes free of EDs.
- Cork industry wastewater partition by ultra/nanofiltration: A biodegradation and valorisation studyPublication . Bernardo, Marisa; Santos, Ana; Cantinho, Paula; Minhalma, MiguelWastewater from cork processing industry present high levels of organic and phenolic compounds, such as tannins, with a low biodegradability and a significant toxicity. These compounds are not readily removed by conventional municipal wastewater treatment, which is largely based on primary sedimentation followed by biological treatment. The purpose of this work is to study the biodegradability of different cork wastewater fractions, obtained through membrane separation, in order to assess its potential for biological treatment and having in view its valorisation through tannins recovery, which could be applied in other industries. Various ultrafiltration and nanofiltration membranes where used, with molecular weight cut-offs (MWCO) ranging from 0.125 to 91 kDa. The wastewater and the different permeated fractions were analyzed in terms of Total Organic Carbon (TOC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Total Phenols (TP), Tannins, Color, pH and Conductivity. Results for the wastewater shown that it is characterized by a high organic content (670.5-1056.8 mg TOC/L, 2285-2604 mg COD/L, 1000-1225 mg BOD/L), a relatively low biodegradability (0.35-0.38 for BODs/COD and 0.44-0.47 for BOD20/COD) and a high content of phenols (360-410 mg tannic acid/L) and tannins (250-270 mg tannic acid/L). The results for the wastewater fractions shown a general decrease on the pollutant content of permeates, and an increase of its biodegradability, with the decrease of the membrane MWCO applied. Particularly, the permeated fraction from the membrane MWCO of 3.8 kDa, presented a favourable index of biodegradability (0.8) and a minimized phenols toxicity that enables it to undergo a biological treatment and so, to be treated in a municipal wastewater treatment plant. Also, within the perspective of valorisation, the rejected fraction obtained through this membrane MWCO may have a significant potential for tannins recovery. Permeated fractions from membranes with MWCO lower than 3.8 kDa, presented a particularly significant decline of organic matter and phenols, enabling this permeates to be reused in the cork processing and so, representing an interesting perspective of zero discharge for the cork industry, with evident environmental and economic advantages. (C) 2010 Elsevier Ltd. All rights reserved.
- Concentration polarization quantification and minimization in cork process wastewater ultrafiltration by an ozone pretreatmentPublication . Minhalma, Miguel; De Pinho, Maria Norberta; Dominguez, Joaquin R.Concentration polarization and membrane fouling have been identified as the main problems during the ultrafiltration treatment of cork processing wastewaters. These problems drastically reduce the permeate fluxes and, therefore, their potential applications. In this work, a soft ozonation pretreatment was applied to minimize these undesirable effects. A new systematic study was carried out for membranes with different molecular weight cut-offs and at different operating conditions to monitor and quantify the concentration polarization caused by the wastewater's remaining ozonated compounds. Film theory was used to correlate the mass transfer coefficient, k, and the intrinsic rejection coefficient, f ', with the resistance introduced by concentration polarization. The ultrafiltration treatment was carried out under varying hydrodynamic operating conditions (circulating flow rates of 100-200 L/h) and transmembrane pressures (1-3 bar) for a set of four cellulose acetate membranes covering a wide range of molecular weight cut-offs (5000-100,000 Da) and hydraulic permeabilities (25-110 kg/h/m(2)/bar). The ozone pretreatment (at wastewater pH) reduced the phenolic content selectively (direct oxidation) by more than 50%, reducing membrane fouling and concentration polarization and increasing permeate fluxes (by 22-45%) and mass transfer coefficients (up to six times).
- Assessment of saccharide fractionation by ultrafiltration and nanofiltrationPublication . Catarino, Isabel; Minhalma, Miguel; Beal, Lademir L.; Mateus, Marília; Pinho, Maria Norberta deThis paper addresses the investigation of the fractionation of saccharide mixtures and saccharide mixtures with calcium using ultrafiltration (UF) and nanofiltration (NF). A set of cellulose acetate membranes covered a wide range of molecular weight cut-off (MWCO) ranging from 250 to 46,000 Da and the total feed concentration of saccharides mixtures varied from 1550 to 4700 ppm with the ratio of the two saccharides-solutes (glucose to raffinose) being kept constant at the value of 1.8. The evolution pattern of the saccharide concentration ratio in the UF/NF permeate streams displayed a dependence on the membrane MWCO, on the total sugar concentration and on the presence of calcium ions. For the highest total sugar content, the membranes with MWCO from 2000 to 7000 Da showed saccharide fractionation capability that was enhanced in the presence of calcium. The Steric Pore Flow Model was used to predict individual solute permeation behaviours and to assess the deviations to steric hindered transport of the solutes in multi-component saccharide solutions. (C) 2008 Elsevier B.V. All rights reserved.
- Cork processing wastewater treatment/valorisation by nanofiltrationPublication . Oliveira, J.; Nunes, M.; Santos, P.; Cantinho, Paula; Minhalma, MiguelNanofiltration process for the treatment/valorisation of cork processing wastewaters was studied. A DS-5 DK 20/40 (GE Water Technologies) nanofiltration membrane/module was used, having 2.09 m(2) of surface area. Hydraulic permeability was determined with pure water and the result was 5.2 L.h(-1).m(-2).bar(-1). The membrane presents a rejection of 51% and 99% for NaCl and MgSO4 salts, respectively. Two different types of regimes were used in the wastewaters filtration process, total recycling mode and concentration mode. The first filtration regime showed that the most favourable working transmembrane pressure was 7 bar working at 25 degrees C. For the concentration mode experiments it was observed a 30% decline of the permeate fluxes when a volumetric concentration factor of 5 was reached. The permeate COD, BOD5, colour and TOC rejection values remained well above the 90% value, which allows, therefore, the concentration of organic matter (namely the tannin fraction) in the concentrate stream that can be further used by other industries. The permeate characterization showed that it cannot be directly discharged to the environment as it does not fulfil the values of the Portuguese discharge legislation. However, the permeate stream can be recycled to the process (boiling tanks) as it presents no colour and low TOC (< 60 ppm) or if wastewater discharge is envisaged we have observed that the permeate biodegradability is higher than 0.5, which renders conventional wastewater treatments feasible.
- Biodegradation rate constants in different NF/UF fractions of cork processing wastewatersPublication . Bernardo, Marisa; Santos, Ana; Cantinho, Paula; Minhalma, MiguelCork processing wastewater is an aqueous complex mixture of organic compounds that have been extracted from cork planks during the boiling process. These compounds, such as polysaccharides and polyphenols, have different biodegradability rates, which depend not only on the natureof the compound but also on the size of the compound. The aim of this study is to determine the biochemical oxygen demands (BOD) and biodegradationrate constants (k) for different cork wastewater fractions with different organic matter characteristics. These wastewater fractions were obtained using membrane separation processes, namely nanofiltration (NF) and ultrafiltration (UF). The nanofiltration and ultrafiltration membranes molecular weight cut-offs (MWCO) ranged from 0.125 to 91 kDa. The results obtained showed that the biodegradation rate constant for the cork processing wastewater was around 0.3 d(-1) and the k values for the permeates varied between 0.27-0.72 d(-1), being the lower values observed for permeates generated by the membranes with higher MWCO and the higher values observed for the permeates generated by the membranes with lower MWCO. These higher k values indicate that the biodegradable organic matter that is permeated by the membranes with tighter MWCO is more readily biodegradated.