Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 16
  • From unthinned continent to ocean: The deep structure of the West Iberia passive continental margin at 38º N
    Publication . Afilhado, Alexandra; Matias, L.; Shiobara, H.; Hirn, A.; Mendes-Victor, L.; Shimamura, H.
    The crustal and lithospheric mantle structure at the south segment of the west Iberian margin was investigated along a 370 km long seismic transect. The transect goes from unthinned continental crust onshore to oceanic crust, crossing the ocean-continent transition (OCT) zone. The wide-angle data set includes recordings from 6 OBSs and 2 inland seismic stations. Kinematic and dynamic modeling provided a 2D velocity model that proved to be consistent with the modeled free-air anomaly data. The interpretation of coincident multi-channel near-vertical and wide-angle reflection data sets allowed the identification of four main crustal domains: (i) continental (east of 9.4 degrees W); (ii) continental thinning (9.4 degrees W-9.7 degrees W): (iii) transitional (9.7 degrees W-similar to 10.5 degrees W); and (iv) oceanic (west of similar to 10.5 degrees W). In the continental domain the complete crustal section of slightly thinned continental crust is present. The upper (UCC, 5.1-6.0 km/s) and the lower continental crust (LCC, 6.9-7.2 km/s) are seismically reflective and have intermediate to low P-wave velocity gradients. The middle continental crust (MCC, 6.35-6.45 km/s) is generally unreflective with low velocity gradient. The main thinning of the continental crust occurs in the thinning domain by attenuation of the UCC and the LCC. Major thinning of the MCC starts to the west of the LCC pinchout point, where it rests directly upon the mantle. In the thinning domain the Moho slope is at least 13 degrees and the continental crust thickness decreases seaward from 22 to 11 km over a similar to 35 km distance, stretched by a factor of 1.5 to 3. In the oceanic domain a two-layer high-gradient igneous crust (5.3-6.0 km/s; 6.5-7.4 km/s) was modeled. The intra-crustal interface correlates with prominent mid-basement, 10-15 km long reflections in the multi-channel seismic profile. Strong secondary reflected PmP phases require a first order discontinuity at the Moho. The sedimentary cover can be as thick as 5 km and the igneous crustal thickness varies from 4 to 11 km in the west, where the profile reaches the Madeira-Tore Rise. In the transitional domain the crust has a complex structure that varies both horizontally and vertically. Beneath the continental slope it includes exhumed continental crust (6.15-6.45 km/s). Strong diffractions were modeled to originate at the lower interface of this layer. The western segment of this transitional domain is highly reflective at all levels, probably due to dykes and sills, according to the high apparent susceptibility and density modeled at this location. Sub-Moho mantle velocity is found to be 8.0 km/s, but velocities smaller than 8.0 km/s confined to short segments are not excluded by the data. Strong P-wave wide-angle reflections are modeled to originate at depth of 20 km within the lithospheric mantle, under the eastern segment of the oceanic domain, or even deeper at the transitional domain, suggesting a layered structure for the lithospheric mantle. Both interface depths and velocities of the continental section are in good agreement to the conjugate Newfoundland margin. A similar to 40 km wide OCT having a geophysical signature distinct from the OCT to the north favors a two pulse continental breakup.
  • Deep structure of the Santos basin-São Paulo plateau system, SE Brazil
    Publication . Evain, M.; Afilhado, Alexandra; Rigoti, C.; Loureiro, A.; Alves, D.; Klingelhoefer, Frauke; Schnurle, Philippe; Feld, Aurelie; Fuck, R; Soares, J.; Lima, M. Vinicius de; Corela, C.; Matias, Luís; Benabdellouahed, M.; Baltzer, A.; Rabineau, Marina; Viana, A.; Moulin, Maryline; Aslanian, Daniel
    The structure and nature of the crust underlying the Santos Basin-São Paulo Plateau System (SSPS), in the SE Brazilian margin, are discussed based on five wide-angle seismic profiles acquired during the Santos Basin (SanBa) experiment in 2011. Velocity models allow us to precisely divide the SSPS in six domains from unthinned continental crust (Domain CC) to normal oceanic crust (Domain OC). A seventh domain (Domain D), a triangular shape region in the SE of the SSPS, is discussed by Klingelhoefer et al. (2014). Beneath the continental shelf, a similar to 100km wide necking zone (Domain N) is imaged where the continental crust thins abruptly from similar to 40km to less than 15km. Toward the ocean, most of the SSPS (Domains A and C) shows velocity ranges, velocity gradients, and a Moho interface characteristic of the thinned continental crust. The central domain (Domain B) has, however, a very heterogeneous structure. While its southwestern part still exhibits extremely thinned (7km) continental crust, its northeastern part depicts a 2-4km thick upper layer (6.0-6.5km/s) overlying an anomalous velocity layer (7.0-7.8km/s) and no evidence of a Moho interface. This structure is interpreted as atypical oceanic crust, exhumed lower crust, or upper continental crust intruded by mafic material, overlying either altered mantle in the first two cases or intruded lower continental crust in the last case. The deep structure and v-shaped segmentation of the SSPS confirm that an initial episode of rifting occurred there obliquely to the general opening direction of the South Atlantic Central Segment.
  • Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil
    Publication . Loureiro, Afonso; Schnürle, P.; Klingelhoefer, Frauke; Afilhado, Alexandra; Pinheiro, J.; Evain, Mikael; Gallais, F.; Dias, Nuno; Rabineau, Marina; Baltzer, A.; Benabdellouahed, M.; Soares, J.; Fuck, R.; Cupertino, J. A.; Viana, Adriano Roessler; Matias, Luis; Moulin, Maryline; Aslanian, D.; Morvan, L.; Mazé, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Júnior, P. Barros; Biari, Youssef; Corela, C.; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Lima, M. Vinicius Aparecido Gomes de; Piver, D. Le; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.
    Twelve combined wide-angle refraction and coincident multi-channel seismic profiles were acquired in the Jequitinhonha-Camamu-Almada, Jacuípe, and Sergipe-Alagoas basins, NE Brazil, during the SALSA experiment in 2014. Profiles SL11 and SL12 image the Jequitinhonha basin, perpendicularly to the coast, with 15 and 11 four-channel ocean-bottom seismometers, respectively. Profile SL10 runs parallel to the coast, crossing profiles SL11 and SL12, imaging the proximal Jequitinhonha and Almada basins with 17 ocean-bottom seismometers. Forward modelling, combined with pre-stack depth migration to increase the horizontal resolution of the velocity models, indicates that sediment thickness varies between 3.3 km and 6.2 km in the distal basin. Crustal thickness at the western edge of the profiles is of around 20 km, with velocity gradients indicating a continental origin. It decreases to less than 5 km in the distal basin, with high seismic velocities and gradients, not compatible with normal oceanic crust nor exhumed upper mantle. Typical oceanic crust is never imaged along these about 200 km-long profiles and we propose that the transitional crust in the Jequitinhonha basin is a made of exhumed lower continental crust.
  • Deep structure of the North Natal Valley (Mozambique) using combined wide-angle and reflection seismic data
    Publication . Lepretre, A.; Schnurle, P.; Evain, Mikael; Verrier, F.; Moorcroft, D.; Clarens, P. de; Corela, C.; Afilhado, Alexandra; Loureiro, Afonso; LEROY, Sylvie; D'Acremont, Elia; Thompson, J.; Aslanian, D.; Moulin, Maryline
    The North Natal Valley (NNV) and the Mozambique Coastal Plain (MCP) are key areas for the understanding of the SW Indian Ocean history since the Gondwana break-up. Nevertheless, the deep structures and the nature of the NNV and MCP remain discussed in the absence of deep geophysical data. In 2016, the NNV, MCP and Limpopo margin (LM) have been investigated along seven wide-angle and MCS profiles. The combined wide-angle and reflection seismic interpretation along the N-S MZ7 profile reveals an upper sedimentary sequence characterized by low velocities generally not exceeding 3 km/s, with thicknesses varying from 0.150 km in the central part to similar to 2.8 km in the south. The underlying sequence is formed of a 2.53.0 km thick volcano-sedimentary sequence which presents important lateral and with depth changes and presence of high velocity lenses, indicating inter-bedded volcanic sills and recurrent magmatic episodes. The south of the NNV including the Naude Ridge (NR) presents a disturbed sedimentary cover with structural highs and southward-dipping reflectors and sub-basins. The crust, reaching 35-40 km onshore below the MCP, gently thins below the continental shelf to a regular thickness of similar to 29 km below the NNV. Crustal velocities reveal low velocity gradients, with atypical high velocities. South the ND, the crust thins to 15 km. We interpret the velocity architecture combined with the evidences of volcanism at shallower depths as indicating an intensively intruded continental crust. Contrary to what is proposed in most geodynamic models, the Mozambique Coastal plain and the Natal Valley are both of continental nature, with an abrupt necking zone located south of NR. The Antarctica plate was therefore situated at the eastern limit of these two domains before the Gondwana breakup.
  • Response of a multi-domain continental margin to compression: Study from seismic reflection-refraction and numerical modelling in the Tagus Abyssal Plain
    Publication . Neves, M. C.; Terrinha, R.; Afilhado, Alexandra; Moulin, M.; Matias, L.; Rosas, F.
    The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.
  • Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) - I. Gulf of Lion's margin
    Publication . Moulin, Maryline; Klingelhoefer, Frauke; Afilhado, Alexandra; Aslanian, Daniel; Schnurle, Philippe; Nouze, Herve; Rabineau, Marina; Beslier, Marie-Odile; Feld, Aurelie
    The conjugate margins system of the Gulf of Lion and West Sardinia (GLWS) represents a unique natural laboratory for addressing fundamental questions about rifting due to its landlocked situation, its youth, its thick sedimentary layers, including prominent palaeo-marker such as the MSC event, and the amount of available data and multidisciplinary studies. The main goals of the SARDINIA experiment, were to (i) investigate the deep structure of the entire system within the two conjugate margins: the Gulf of Lion and West Sardinia, (ii) characterize the nature of the crust, and (iii) define the geometry of the basin and provide important constrains on its genesis. This paper presents the results of P-wave velocity modelling on three coincident near-vertical reflection multi-channel seismic (MCS) and wide-angle seismic profiles acquired in the Gulf of Lion, to a depth of 35 km. A companion paper [part II Afilhado et al., 2015] addresses the results of two other SARDINIA profiles located on the oriental conjugate West Sardinian margin. Forward wide-angle modelling of both data sets confirms that the margin is characterised by three distinct domains following the onshore unthinned, 33 km-thick continental crust domain: Domain I is bounded by two necking zones, where the crust thins respectively from 30 to 20 and from 20 to 7 km over a width of about 170 km; the outermost necking is imprinted by the well-known T-reflector at its crustal base; Domain II is characterised by a 7 km-thick crust with anomalous velocities ranging from 6 to 7.5 km/s; it represents the transition between the thinned continental crust (Domain I) and a very thin (only 4-5 km) "atypical" oceanic crust (Domain III). In Domain II, the hypothesis of the presence of exhumed mantle is falsified by our results: this domain may likely consist of a thin exhumed lower continental crust overlying a heterogeneous, intruded lower layer. Moreover, despite the difference in their magnetic signatures, Domains II and III present the very similar seismic velocities profiles, and we discuss the possibility of a connection between these two different domains.
  • Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil
    Publication . Loureiro, Afonso; Afilhado, Alexandra; Matias, Luis; Moulin, Maryline; Aslanian, Daniel
    In the Santos Basin (Brazil), two parallel wide-angle refraction profiles show different crustal structures. One shows moderate crustal velocity gradient, and a clear Moho with topography. The other has an anomalous velocity zone, and no clear Moho reflections. This has large implications on the geological and geodynamical interpretation of the basin. Model uncertainties must be excluded as a source of t hese differences. We developed VMONTECARLO, a tool to assess model uncertainty of layered velocity models using a Monte Carlo approach and simultaneous parameter perturbation using all picked refracted and reflected arrivals. It gives insights into the acceptable geological interpretations allowed by data and model uncertainty through velocitydepth plots that provide: a) the velocity-depth profile range that is consistent with the travel times; b) the random model that provides the best fit, keeping most of the observations covered by ray-tracing; c) insight into valid models dispersion; d) main model features unequivocally required by the travel times, e.g., first-order versus second-order discontinuities, and velocity gradient magnitudes; e) parameter value probability distribution histograms. VMONTECARLO is seamlessly integrated into a RAYINVR-based modelling work-flow, and can be used to assess final models or sound the solution space for alternate models, and is also capable of evaluating forward models without the need for inversion, thus avoiding local minima that may trap the inversion algorithms and providing information for models still not well-parametrised. Results for the Brazilian models show that the imaged structures are indeed geologically different and are not due to different interpretations of the same features within the model uncertainty bounds. These differences highlight the strong heterogeneity of the crust in the middle of the Santos Basin, where the rift is supposed to have failed.
  • Deep structure of the Pará-Maranhão/Barreirinhas passive margin in the equatorial Atlantic (NE Brazil)
    Publication . Aslanian, Daniel; Gallais, Flora; Afilhado, Alexandra; Schnurle, Philippe; Moulin, Maryline; Evain, Mikael; Dias, Nuno; Soares, José; Fuck, Reinhart; Neto, Otaviano da Cruz Pessoa; Viana, Adriano
    The Pará-Maranhão/Barreirinhas margin, North Brazil, is a pull-apart passive margin, with two strike-slip borders, formed during the opening of the Equatorial Atlantic Ocean during Cretaceous time. Its geometry and evolution are speculative due to the lack of information on the crustal structure and the crustal nature. We present here the E-W profiles of the MAGIC (Margins of brAzil, Ghana and Ivory Coast) deep seismic experiment, a joint project between French and Brazilian universities, research institutes and the industry. Fifty-six Ocean Bottom Seismometers (OBS) and a 4.5 seismic streamer were deployed at sea along 2 of the 5 MAGIC profiles. One profile was extended onshore by installing 8 land stations. We perform forward modelling through combined interpretation of the multichannel seismic and of the main reflected and refracted of these phases recorded by the OBSs. The final P-wave velocity models reveal distinct structural domains from onshore Brazil towards the Atlantic Ocean characterized by variations of the crustal thicknesses and velocities: (1) an unthinned continental crust below the São Luís Craton, where the crust is 33 km thick, (2) a 60 km wide necking domain below the Ilha de Santana Platform; (3) offshore, east of the continental slope, a 10 km-thick deep sedimentary basin underlain by a 5 km thick crust with velocity of 6.2–6.9 km/s that we interpret as an exhumed lower continental crust, on the top of an Anomalous Velocity Layer (AVL) probably made of intrusions of mantle-derived melts into the lower continental crust, or a mixture of them; (4) eastwards, the limit of the previous domain is marked by NW-SE aligned volcanoes and the disappearance of the AVL. The sedimentary succession becomes thinner (6 km) overlaying a proto-oceanic crust characterized by seismic velocities higher than “normal” oceanic crust in its upper part, but in continuity with the velocity described in the previous domain; (5) followed by a more characteristic but thin oceanic crust. The middle/lower continental crust seems not only to have a crucial role in the genesis of the passive margin but also to be involved in the genesis of the first oceanic crust. The passage to a typical oceanic crust seems to have occurred progressively by steps: first in the deeper layer by the setup of more and more intrusions of mantle-derived melts at the base of the crust or mixture of exhumed lower crust and mantle, producing a domain of proto-oceanic crust, then by the emplacement of an upper 1-2 km-thick layer with typical oceanic characteristics.
  • Accurate ocean bottom seismometer positioning method inspired by multilateration technique
    Publication . Benazzouz, Omar; Pinheiro, Luis; Matias, Luis; Afilhado, Alexandra; Herold, Daniel; Haines, Seth S.
    The positioning of ocean bottom seismometers (OBS) is a key step in the processing flow of OBS data, especially in the case of self popup types of OBS instruments. The use of first arrivals from airgun shots, rather than relying on the acoustic transponders mounted in the OBS, is becoming a trend and generally leads to more accurate positioning due to the statistics from a large number of shots. In this paper, a linearization of the OBS positioning problem via the multilateration technique is discussed. The discussed linear solution solves jointly for the average water layer velocity and the OBS position using only shot locations and first arrival times as input data.
  • Crustal structure across the São Miguel Island (Azores, North Atlantic) and tectonic implications
    Publication . Batista, L.; Hübscher, C.; Terrinha, P.; Matias, L.; Afilhado, Alexandra; Loureiro, A.; Weiß, B.
    The crustal and uppermost lithospheric mantle of the São Miguel Island in the Azores Plateau was investigated using one 160 km long refraction and wide angle refection seismic profle across the island and the Terceira Rift along with multichan nel seismic refection profles on the top of it. P-wave velocity model shows that São Miguel Island is made up of 5 crustal layers. The sedimentary sequence varies between 150 and 1500 m of thickness and the upper and lower crusts vary from 6 km to maximum thickness of >10 km altogether. The Moho discontinuity lies at 15 km of depth underneath the island and at 11 km outside the island and rift. A 125 km-long layer with a maximum thickness of 2.5 km and Vp of 7.6 km/s is defned at the base of the crust. We speculate that this lens-shaped layer consists of gabbro cumulates formed by magmatic underplating. Extensional southwards directed simple shear across the whole crust and the Moho discontinuity – São Miguel Deep Ductile Deformation Zone – causes uplift, northwards tilting of the island and landslides. Decoupling between ductile deformation in depth and brittle deformation in the shallow levels caused the formation of a rift half-graben flled in with 1500 m of sediments and various mass transport deposits. The São Miguel Deep Ductile Deformation Zone is considered as a difuse plate boundary where deformation is accommodated by brittle mechanisms (seismicity) and plastic fow (lateral thickness variation of the lower crust).