Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Evidences for multiple remagnetization of Proterozoic dykes from Iguerda inlier (Anti-Atlas Belt, Southern Morocco)Publication . Neres, Marta; Silva, Pedro; Ikenne, Moha; Martins, Sofia; Hafid, Ahmid; Mata, João; Almeida, Francisco; Youbi, Nasrrddine; Boumehdi, Moulay AhmedNo paleomagnetic data exist for Paleo-Mesoproterozoic times of the West African Craton (WAC). Therefore, paleogeographic reconstructions for such old geological times are difficult to constrain. Gaps on the sedimentary record and intense remagnetizations are the major problems that paleomagnetic studies come across. Recent geochronological results for dyke swarms that intrude several Proterozoic inliers of WAC in the Anti-Atlas Belt (southern Morocco) revealed ages between Paleoproterozoic and early Neoproterozoic, opening for the first time a window of opportunity to conduct paleomagnetic studies and tentatively infer about the paleoposition of WAC during Proterozoic. On this scope we conducted a paleomagnetic study on seven Proterozoic dykes of the Iguerda inlier. The meaning of the obtained paleomagnetic directions was evaluated by rock magnetic and mineral analyses, complemented by petrographic observations. Our samples record the presence of a complex history of remagnetization, mostly assigned to several Phanerozoic thermal/ chemical events, in particular to the late stages of Pan African orogeny (s.l.), to the Late Carboniferous Variscan orogeny, and even to more recent events. The recognized remagnetization processes are related to widespread metamorphic events under greenschist facies followed by low-temperature oxidation, both responsible for the formation of new magnetic phases, like magnetite and hematite. These events obliterated the primary (magmatic) thermo-remanent magnetization and promoted multiple remagnetizations of the dykes, thermally and chemically. For only one dyke the presence of primary magnetization is possible to infer, though not to confirm, and would place WAC at an equatorial position around 1750 Ma.
- A geological record of multiple Pleistocene tsunami inundations in an oceanic island: the case of Maio, Cape VerdePublication . Madeira, José; Ramalho, Ricardo S.; Hoffmann, Dirk L.; Mata, João; Moreira, MárioIn the Central Atlantic archipelagos - the Canaries, Cape Verde, Madeira and the Azores - tsunami hazard is often regarded as low, when compared with other extreme wave events such as hurricanes and storms. The geological record of many of these islands, however, suggests that tsunami hazard may be underestimated, notwithstanding being lower than in areas adjacent to subduction zones, such as the margins of the Pacific and Indian oceans. Moreover, tsunamis in oceanic islands are generally triggered by local large-scale volcanic flank collapses, for which little is known about their frequency, making it difficult to estimate the probability of a new occurrence. Part of the problem lies in the fact that tsunami deposits are usually difficult to date, and few islands in the world exhibit evidence for repeated tsunami inundation on a protracted timescale. This study reports on the presence of abundant tsunami deposits (conglomerates and sandstones) on Maio Island (Cape Verde) and discusses their stratigraphy, sedimentological characteristics, probable age and tsunamigenic source. Observations indicate that four distinct inundation events of variable magnitude took place during the Pleistocene. One of the tsunami deposits yielded a high-confidence U/Th age of 78 center dot 8 +/- 0 center dot 9 ka, which overlaps within error with the 73 +/- 7 ka age proposed for Fogo volcano's flank collapse, an event known to have had a significant tsunami impact on nearby Santiago Island. This shows that the Fogo tsunami also impacted Maio, resulting in runups in excess of 60 m above coeval sea-level at ca 120 km from the source. Two older deposits, possibly linked to recurrent flank collapses of the Tope de Coroa volcano in Santo Antao Island, yielded lower-confidence ages of 479 to 390 ka and 360 to 304 ka. A younger deposit (<78 ka) remains undated. In summary, the geological record of Maio exhibits well-preserved evidence of repeated tsunami inundation, reinforcing the notion that tsunami hazard is not so low at volcanic archipelagos featuring prominent and highly-active volcanoes such as in Cape Verde.
- Evidence for high temperature in the upper mantle beneath Cape Verde archipelago from Rayleigh-wave phase-velocity measurementsPublication . Carvalho, Joana; Bonadio, Raffaele; Silveira, Graça; Lebedev, Sergei; Mata, João; Arroucau, Pierre; Meier, Thomas; Celli, Nicolas L.Cape Verde is an intraplate archipelago located in the Atlantic Ocean about 560 km west of Senegal, on an similar to 130 Ma old oceanic lithosphere. The upper-mantle structure beneath the islands was poorly known, until recently, in large part due to the lack of broadband seismic stations. In this study we used data from two temporary deployments across the archipelago, measuring the phase velocities of Rayleigh-waves fundamental-modes in a broad period range (8-250 s), by cross-correlating teleseismic earthquake data between pairs of stations. We derived a robust average, phase-velocity curve for the Cape Verde region, and inverted it for a shear-wave velocity profile. Our results show significantly low velocities of similar to 4.2 km/s in the asthenosphere, indicating the presence of anomalously high temperatures and, eventually, partial melting. The temperature anomaly is probably responsible for the thermal rejuvenation of the lithosphere to an effective age as young as about 30 Ma, which we infer from the comparison of seismic velocities beneath Cape Verde archipelago and those representative of different ages in the Central Atlantic. The anomalously high temperature in the asthenosphere, together with previously published evidence on low seismic velocities in the lower mantle and relatively He-unradiogenic isotopic ratios, suggests a hot plume, rooted deep in the lower mantle, as the origin of the Cape Verde hotspot.
- The role of the seismically slow Central-East Atlantic anomaly in the genesis of the Canary and Madeira volcanic provincesPublication . Civiero, Chiara; Custodio, Susana; Neres, Marta; Schlaphorst, David; Mata, João; Silveira, GraçaThe Canary and Madeira provinces in the Central-East Atlantic Ocean are characterized by an irregular spatio-temporal distribution of volcanism along the hotspot tracks, and several alternative scenarios have been suggested to explain it. Here, we combine results from seismic tomography, shear-wave splitting and gravity along with plate reconstruction constraints to investigate the mantle structure and dynamics beneath those provinces. We find that the Central-East Atlantic Anomaly (CEAA), which rises from the core-mantle boundary and stalls in the topmost lower mantle, is the deep source of distinct upper-mantle upwellings beneath the region. The upwellings detach intermittently from the top of the CEAA and appear to be at different evolutionary stages. We argue that the accumulation of plume material in the topmost lower mantle can play a key role in governing the first-order spatio-temporal irregularities in the distribution of hotspot volcanism.
- Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores archipelago): Constraints from elemental and isotopic (Sr, Nd, Hf, and Pb) dataPublication . Madureira, Pedro; Mata, João; Mattielli, Nadine; Queiroz, Gabriela; Silva, PedroThis work addresses the present-day (<100 ka) mantle heterogeneity in the Azores region through the study of two active volcanic systems from Terceira Island. Our study shows that mantle heterogeneities are detectable even when "coeval" volcanic systems (Santa Barbara and Fissural) erupted less than 10 km away. These volcanic systems, respectively, reflect the influence of the Terceira and D. Joao de Castro Bank end-members defined by Beier et at (2008) for the Terceira Rift Santa Barbara magmas are interpreted to be the result of mixing between a HIMU-type component, carried to the upper mantle by the Azores plume, and the regional depleted MORB magmas/source. Fissural lavas are characterized by higher Ba/Nb and Nb/U ratios and less radiogenic Pb-206/Pb-204, Nd-143/Nd-144 and Hf-176/Hf-177, requiring the small contribution of delaminated sub-continental lithospheric mantle residing in the upper mantle. Published noble gas data on lavas from both volcanic systems also indicate the presence of a relatively undegassed component, which is interpreted as inherited from a lower mantle reservoir sampled by the ascending Azores plume. As inferred from trace and major elements, melting began in the garnet stability field, while magma extraction occurred within the spinel zone. The intra-volcanic system's chemical heterogeneity is mainly explained by variable proportions of the above-mentioned local end-members and by crystal fractionation processes.