Repository logo
 

Search Results

Now showing 1 - 6 of 6
  • Predicting cellular rejection of renal allograft based on the serum proteomic fingerprint
    Publication . Ramalhete, Luís; Vieira, Miguel Bigotte; Araújo, Rúben; Vigia, Emanuel; Aires, Inês; Ferreira, Aníbal; Calado, Cecília
    Kidney transplantation is an essential medical procedure that significantly enhances the survival rates and quality of life for patients with end-stage kidney disease. However, despite advancements in immunosuppressive therapies, allograft rejection remains a leading cause of organ loss. Notably, predictions of cellular rejection processes primarily rely on biopsy analysis, which is not routinely performed due to its invasive nature. The present work evaluates if the serum proteomic fingerprint, as acquired by Fourier Transform Infrared (FTIR) spectroscopy, can predict cellular rejection processes. We analyzed 28 serum samples, corresponding to 17 without cellular rejection processes and 11 associated with cellular rejection processes, as based on biopsy analyses. The leave-one-out-cross validation procedure of a Naïve Bayes model enabled the prediction of cellular rejection processes with high sensitivity and specificity (AUC > 0.984). The serum proteomic profile was obtained in a high-throughput mode and based on a simple, rapid, and economical procedure, making it suitable for routine analyses and large-scale studies. Consequently, the current method presents a high potential to predict cellular rejection processes translatable to clinical scenarios, and that should continue to be explored.
  • Label-free discrimination of T and B lymphocyte activation based on vibrational spectroscopy – A machine learning approach
    Publication . Ramalhete, Luís; Araújo, Rúben; Ferreira, Aníbal; Calado, Cecília
    B and T-lymphocytes are major players of the specific immune system, responsible by an efficient response to target antigens. Despite the high relevance of these cells’ activation in diverse human pathophysiological pro cesses, its analysis in clinical context presents diverse constraints. In the present work, MIR spectroscopy was used to acquire the cells molecular profile in a label-free, simple, rapid, economic, and high-throughput mode. Recurring to machine learning algorithms MIR data was subsequently evaluated. Models were developed based on specific spectral bands as selected by Gini index and the Fast Correlation Based Filter. To determine if it was, possible to predict from the spectra, if B and T lymphocyte were activated, and what was the molecular fingerprint of T- or B- lymphocyte activation. The molecular composition of activated lymphocytes was so different from naïve cells, that very good pre diction models were developed with whole spectra (with AUC=0.98). Activated B lymphocytes also present a very distinct molecular profile in relation to activated T lymphocytes, leading to excellent prediction models, especially if based on target bands (AUC=0.99). The identification of critical target bands, according to the metabolic differences between B and T lymphocytes and in association with the molecular mechanism of the activation process highlighted bands associated to lipids and glycogen levels. The method developed presents therefore, appealing characteristics to promote a new diagnostic tool to analyze and discriminate B from T-lymphocytes
  • Proteomics for biomarker discovery for diagnosis and prognosis of kidney transplantation rejection
    Publication . Ramalhete, Luís; Araújo, Rúben; Ferreira, Aníbal; Calado, Cecília
    Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
  • Label-free discrimination of T and B lymphocyte activation based on vibrational spectroscopy: a machine learning approach
    Publication . Ramalhete, Luís; Araújo, Rúben; Ferreira, Aníbal; Calado, Cecília
    B and T-lymphocytes are major players of the specific immune system, responsible by an efficient response to target antigens. Despite the high relevance of these cells’ activation in diverse human pathophysiological processes, its analysis in clinical context presents diverse constraints. In the present work, MIR spectroscopy was used to acquire the cells molecular profile in a label-free, simple, rapid, economic, and high-throughput mode. Recurring to machine learning algorithms MIR data was subsequently evaluated. Models were developed based on specific spectral bands as selected by Gini index and the Fast Correlation Based Filter. To determine if it was, possible to predict from the spectra, if B and T lymphocyte were activated, and what was the molecular fingerprint of T- or B- lymphocyte activation. The molecular composition of activated lymphocytes was so different from naïve cells, that very good prediction models were developed with whole spectra (with AUC=0.98). Activated B lymphocytes also present a very distinct molecular profile in relation to activated T lymphocytes, leading to excellent prediction models, especially if based on target bands (AUC=0.99). The identification of critical target bands, according to the metabolic differences between B and T lymphocytes and in association with the molecular mechanism of the activation process highlighted bands associated to lipids and glycogen levels. The method developed presents therefore, appealing characteristics to promote a new diagnostic tool to analyze and discriminate B from T-lymphocytes.
  • Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection
    Publication . Ramalhete, Luís; Araújo, Rúben; Ferreira, Aníbal; Calado, Cecília
    Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
  • Exosomes and microvesicles in kidney transplantation: the long road from trash to gold
    Publication . Ramalhete, Luís; Araújo, Rúben; Ferreira, Aníbal; Calado, Cecília
    Kidney transplantation significantly enhances the survival rate and quality of life of patients with end-stage kidney disease. The ability to predict post-transplantation rejection events in their early phases can reduce subsequent allograft loss. Therefore, it is critical to identify biomarkers of rejection processes that can be acquired on routine analysis of samples collected by non-invasive or minimally invasive procedures. It is also important to develop new therapeutic strategies that facilitate optimisation of the dose of immunotherapeutic drugs and the induction of allograft immunotolerance. This review explores the challenges and opportunities offered by extracellular vesicles (EVs) present in biofluids in the discovery of biomarkers of rejection processes, as drug carriers and in the induction of immunotolerance. Since EVs are highly complex structures and their composition is affected by the parent cell's metabolic status, the importance of defining standardised methods for isolating and characterising EVs is also discussed. Understanding the major bottlenecks associated with all these areas will promote the further investigation of EVs and their translation into a clinical setting. .