Repository logo
 
Loading...
Profile Picture
Person

Félix Brogueira, Pedro Miguel

Search Results

Now showing 1 - 10 of 12
  • Wrinkling Labyrinth Patterns on Elastomeric Janus Particles
    Publication . Trindade, A. C.; Canejo, João; Pinto, L. F. V.; Patricio, Pedro; Brogueira, Pedro; Teixeira, Paulo; Godinho, Maria Helena
    We describe a novel, low-cost and low-tech method for the fabrication of elastomeric Janus particles with diameters ranging from micrometers to millimeters. This consists of UV-irradiating soft urethane/urea elastomer spheres, which are then extracted in toluene and dried. The spheres are thus composed of a single material: no coating or film deposition steps are required. Furthermore, the whole procedure is carried out at ambient temperature and pressure. Long, labyrinthine corrugations ("wrinkles") appear on the irradiated portions of the particles' surfaces, the spatial periodicity of which can be controlled by varying the sizes of particles. The asymmetric morphology of the resulting Janus particles has been confirmed by scanning electron microscopy, atomic force microscopy, and optical microscopy. We have also established that the spheres behave elastically by performing bouncing tests with dried and swollen spheres. Results can be interpreted by assuming that each sphere consists of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesized to result from the more extensive cross-linking of the polymer chains located near the surface by the UV radiation. Textures then arise from competition between the effects of bending the skin and compressing the bulk, as the solvent evaporates and the sphere shrinks.
  • Hierarchical wrinkling on elastometric Janus spheres
    Publication . Trindade, Ana C.; Canejo, João; Patricio, Pedro; Brogueira, Pedro; Teixeira, Paulo; Godinho, Maria Helena
    Hierarchical wrinkling on elastomeric Janus spheres is permanently imprinted by swelling, for different lengths of time, followed by drying the particles in an appropriate solvent. First-order buckling with a spatial periodicity (lambda(11)) of the order of a few microns and hierarchical structures comprising of 2nd order buckling with a spatial periodicity (lambda(12)) of the order of hundreds of nanometers have been obtained. The 2nd order buckling features result from a Grinfeld surface instability due to the diffusion of the solvent and the presence of sol molecules.
  • Photoconductivity kinetics of indium sulfofluoride thin films star
    Publication . Vygranenko, Yuri; Fernandes, Miguel; Vieira, Manuela; Lavareda, Guilherme; CARVALHO, CARLOS; Brogueira, Pedro; Amaral, Ana
    Indium sulfofluoride is an amorphous wide-gap semiconductor exhibiting high sensitivity to UV radiation. This work reports on the kinetics of photoconductivity in indium sulfofluoride thin films along with their electrical and optical properties. The films were deposited by radio-frequency plasma-enhanced reactive thermal evaporation. The film characterization includes electrical, optical, and photoconductivity measurements. The films are highly transparent in the visible-infrared range due to an indirect bandgap of 2.8 eV. The spectral response measurements have revealed existence of the band tail states. The synthesized compound is highly resistive (similar to 200 M ohm-cm at 300 K) and exhibits extremely slow photocurrent relaxations. Photoconductivity kinetics was studied under various excitation conditions. A dependence of the photocurrent on the incident photon flux was also determined.
  • Tuneable micro- and nano-periodic structures in urethane/urea networks
    Publication . Godinho, M. H.; Figueirinhas, J. L.; Brogueira, Pedro; Teixeira, Paulo
    Micro- and nano-patterned materials are of great importance for the design of new nanoscale electronic, optical and mechanical devices, ranging from sensors to displays. A prospective system that can support a designed functionality is elastomeric polyurethane thin films with nano- or micromodulated surface structures ("wrinkles"). These wrinkles can be induced on different lengthscales by mechanically stretching the films, without the need for any sophisticated lithographic techniques. In the present article we focus on the experimental control of the wrinkling process. A simple model for wrinkle formation is also discussed, and some preliminary results reported. Hierarchical assembly of these tunable structures paves the way for the development of a new class of materials with a wide range of applications, from electronics to biomedicine.
  • Light shutters from nanocrystalline cellulose rods in a nematic liquid crystal
    Publication . Geng, Yong; Brogueira, Pedro; Figueirinhas, João; Godinho, Maria Helena; Almeida, Pedro L.
    This work reports a recently developed electro-optical (EO) device that can potentially be used as a light shutter or a privacy window. By using nanocrystalline cellulose rods, we were able to improve some of the most relevant parameters characterising the EO behaviour. A brief description of the proposed working mechanism for these devices is presented, and numerical simulations based on this mechanism of both the optical transmission and the cells' electrical capacitance are compared with the obtained results, validating the underlying working model considered.
  • Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro- and Nanofibers
    Publication . Canejo, João; Borges, João P.; Godinho, M. Helena; Brogueira, Pedro; Teixeira, Paulo; Terentje, Eugene M.
    Helically twisted fibers can be produced by electrospinning liquid-crystalline cellulose solutions. Fiber topographies are studied by atomic force microscopy, scanning electron microscopy (see figure) and polarized optical microscopy. The fibers have a nearly universal pitch-to-diameter ratio and comprise both right- and left-handed helices.
  • Soft janus, wrinkles and all
    Publication . Trindade, A. C.; Patricio, Pedro; Teixeira, Paulo; Brogueira, Pedro; Godinho, Maria Helena
    Right now you are probably sitting on a comfy cushion. This is most likely filled with polyurethane (PU) foam. PUs are very long molecules made up of many repeating units. If the repeating units are prepolymers - intermediate-mass building blocks - with more than two reactive end groups, a three-dimensional network will form - a rubber, or elastomer, which can behave elastically depending on the degree of network cross-linking.
  • Optical and photoconductive properties of indium sulfide fluoride thin films
    Publication . Vygranenko, Yuri; Vieira, Manuela; Lavareda, G.; Carvalho, C. Nunes de; Brogueira, Pedro; Amaral, A.; Pessoa Barradas, Nuno; Alves, E.
    This work reports on transparent semiconducting indium sulfide fluoride (ISF) thin-films exhibiting high sensitivity to ultraviolet radiation. The films were deposited on fused silica and silicon substrates using a radiofrequency plasma-enhanced reactive thermal evaporation system. The deposition was performed evaporating pure indium in SF6 plasma at a substrate temperature of 423 K. Rutherford backscattering measurements were used to determine the chemical composition of the films deposited on silicon substrates. The surface morphology was studied using scanning electron microscopy technique. The film characterization includes electrical, optical, and photoconductivity measurements. The synthesized compound is highly-resistive (similar to 700 M Omega-cm at 300 K) and exhibits an evident semiconducting behavior. The activation energy of 0.88 eV is deduced from the temperature dependence of electrical resistivity. The indirect band energy gap of 2.8 eV is determined from transmittance spectra of the ISF films. The photoconductivity band is centered at 345 nm wavelength. The photoconductivity spectrum also shows the Urbach tail with a characteristic energy of 166 meV. ISF is a promising candidate for a buffer layer in chalcogenide-based solar cells.
  • An indium-oxide electrode with discontinuous Au layers for plasmonic devices
    Publication . Vygranenko, Yuri; Lavareda, G.; André, V.; Brogueira, Pedro; Amaral, A.; Fernandes, M.; Fantoni, Alessandro; Vieira, Manuela
    In this contribution we report on a low cost plasmonic electrode for light-sensing applications. The electrode combines a conducting nonstoichiometric indium oxide (InOx) layer with an ultrathin (~5 nm) discontinuous Au layer. The InOx and Au layers were deposited on glass substrates by plasma enhanced reactive thermal evaporation and thermal evaporation, respectively. Several device configurations with one or two Au layer(s) sandwiched between InOx layers were fabricated and characterized. The morphological and structural properties of both Au and InOx layers were analyzed using AFM and XRD techniques. In particular, the effect of thermal annealing (673 K, 15 min) on the surface morphology of Au layers grown on bare glass and InOx-coated substrate was investigated. It has been also found that the oxide film grown above an underlying nanostructured Au layer is amorphous, while a reference InOx film on glass is nanocrystalline with a smooth surface. The electrical properties of InOx grown on the Au surface are worsened due to Au-induced structural disorder. The observed difference in transmission spectra of the glass/InOx/Au and glass/Au/InOx structures indicates the difference in the morphology of the metal layer. Thus, the optical and morphological properties of the InOx electrode can be varied in a wide range by incorporating several Au layers.
  • Etchability dependence of InOx and ITO thin films by plasma enhanced reactive termal evaporation on structural properties and deposition conditions
    Publication . Amaral, Ana; Lavareda, Guilherme; Carvalho, Carlos Nunes de; Andre, Vania; Vygranenko, Yuri; Fernandes, Miguel; Brogueira, Pedro
    Indium oxide (InOx) and indium tin oxide (ITO) thin films were deposited on glass substrates by plasma enhanced reactive thermal evaporation (PERTE) at different substrate temperatures. The films were then submitted to two etching solutions with different chemical reactivity: i) HNO3 (6%), at room temperature; ii) HCl (35%): (40 °Be) FeCl3 (1:1), at 40 °C. The dependence of the etchability of the films on the structural and deposition conditions is discussed. Previously to etching, structural characterization was made. X-ray diffraction showed the appearance of a peak around 2θ=31° as the deposition temperature increases from room temperature to 190 °C, both for ITO and InOx. AFM surface topography and SEM micrographs of the deposited films are consistent with the structural properties suggested by X-ray spectra: as the deposition temperature increases, the surface changes from a finely grained structure to a material with a larger-sized grain or/and agglomerate structure of the order of 250-300 nm. The roughness Rq varies from 0.74 nm for the amorphous tissue to a maximum of 10.83 nm for the sample with the biggest crystalline grains. Raman spectra are also presented.