Loading...
13 results
Search Results
Now showing 1 - 10 of 13
- Indoor positioning and intuitive advertising using visible light communicationPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, PedroThis paper researches the applicability of an intuitive advertising system for large indoor environments using Visible Light Communication (VLC). This VLC based positioning system includes the use of the visible light signal to light the space and to transmit the information for travelers’ positioning and of advertising campaigns in the surroundings. White RGB-LEDs, whose original function is providing illumination, are used as transmitters due to the ability of each individual chip to switch quickly enough to transfer data. This functionality is used for communication where the multiplexed data can be encoded in the emitting light. The light signals emitted by the LEDs positioned in the area of the advertising campaign are interpreted directly by the customers’ receivers. A SiC optical sensor with light filtering and demultiplexing properties receives the modulated signals containing the ID and the geographical position of the LED and other information, demultiplexes and decodes the data and locates the mobile device in the environment. Different layouts are analysed: square and hexagonal meshes are tested, and a 2D localization design, demonstrated by a prototype implementation, is presented. The key differences between both topologies are discussed. For both, the transmitted information, indoor position and motion direction of the customer are determined. The results showed that the LED-aided VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction as a function of time and to interact with information received.
- Indoor wayfinding using visible light communicationPublication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, PedroOptical wireless communication has been widely studied during the last years in short-range applications. This paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include finding places, like a particular shop or office, guiding users across different floors, through elevators and stairs. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetector with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered within the overlap discs of each cells underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the Aps is evaluated and a model for the different cellular networks is analyzed. Orthogonal topologies are tested, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. Buddy wayfinding services are also implemented. The results showed that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and to optimize the route towards a static or dynamic destination.
- Wayfinding services in crowded buildings through visible lightPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, PedroThis paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
- Geolocation and communication in unfamiliar indoor environments through visible lightPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, PedroTo support people’s wayfinding activities in unfamiliar indoor environments, a method able to generate ceiling landmark route instructions using Visible Light Communication (VLC) is proposed. The system is composed of several transmitters (ceiling luminaries) which send the map information and path messages required to wayfinding. Mobile optical receivers, using joint transmission, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Bidirectional communication between the emitters and the receivers is available in strategic optical access point. Typical scenarios are simulated and include finding places and guiding users across different floors. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used, providing a different data channel for each chip. At the receiver, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetectors with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located. The coded light signals are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the APs is evaluated and a model for the different cellular networks is analyzed. Orthogonal and hexagonal topologies are tested, and a 3D localization design, demonstrated by a prototype is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. The results show that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and optimize the route towards a static or dynamic destination.
- Dynamic VLC navigation system in crowded buildingsPublication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, PedroThis paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
- Indoor self-localization and wayfinding services using visible light communication: a modelPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Rodrigues, João; Vieira, PedroVisible Light Communication (VLC) is a promising technology that can jointly be used to accomplish the typical lighting functionalities of the Light-Emitting Diodes (LEDs) and data transmission, where light intensity can be modulated on a high rate that cannot be noticed by the human eye. A VLC cooperative system that supports guidance services and uses an edge/fog based architecture for wayfinding services is presented. The dynamic navigation system is composed of several transmitters (luminaries) which send the map information and path messages required to wayfinding. Each luminaire for downlink transmission is equipped with one two type of controllers: mesh controller and cellular controllers to forward messages to other devices in the vicinity or to the central manager services. Data from the luminaires is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources, located in ceiling landmarks, are used providing a different data channel for each chip. Mobile optical receivers, collect the data, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Uplink transmission is implemented and the best route to navigate through venue calculated. The results show that the system allows determining the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received optimizing the route towards the destination.
- Cooperative self-localization and wayfinding services through visible light communicationPublication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, PedroA Visible Light Communication (VLC) cooperative system that supports guidance services and uses an edge/fog based architecture for wayfinding services is presented. The integrated dynamic navigation system consists of multiple transmitters (luminaries) which transmit the map information and path messages necessary for wayfinding. The luminaires used for downlink transmission are equipped with one of two types of controllers: mesh controllers or cellular controllers, which, respectively, forward messages to other devices in the vicinity or to the central manager. Mobile optical receivers, collect the data, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Uplink transmission is implemented and the best route to navigate through venue calculated. Each luminaire, through VLC, reports its geographic position and specific information to the users, making it available for use. Bidirectional communication is implemented and the best route to navigate through venue calculated. Buddy wayfinding services are also considered. Results indicate that the system is able to perform not just the self-localization, but also infer the travel direction and interact with it, optimizing the route to a static or dynamic destination.
- Bi-directional VLC LED-assisted navigation system for large indoor environmentsPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, PedroIn this paper, a LED-assisted positioning and navigation VLC system is proposed. A VLC scenario for large environments is stablished, the emitters and receivers are characterized and the communication protocol presented. Different layouts are analyzed. Square and hexagonal meshes are tested and a 2D localization design, demonstrated by a prototype implementation, is presented. The key differences between both topologies are discussed. For both, the transmitted information, indoor position, motion direction as well as bi-directional communication are determined. The results showed that the LED-aided VLC navigation system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received.
- Positioning and advertising in large indoor environments using visible light communicationPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Vieira, PedroWe investigate the applicability of an intuitive advertising system for large indoor environments using visible light communication (VLC). This VLC-based positioning system includes the use of the visible light signals to light the space and to transmit information for traveler positioning and for advertising campaigns in the surroundings. As transmitters, white RGB-LEDs were used. Although their original function is to provide illumination, due to the ability of each individual chip to switch quickly enough to transfer data, they were used to broadcast information. This functionality is used for communication where multiplexed data can be encoded in the emitting light. The light signals emitted by the LEDs, positioned in the area of an advertising campaign are interpreted directly by the customers’ receivers. A silicon carbide optical sensor with light filtering and demultiplexing properties receives the modulated signals containing the ID, the geographical position of the LED, and other information, and then it demultiplexes and decodes the data and locates the mobile device within the environment. Different layouts are analyzed; square and hexagonal meshes are tested, and a two-dimensional localization design, demonstrated by a prototype implementation, is presented. The key differences between both topologies are discussed. For both, the transmitted information, indoor position, and motion direction of the customer are determined. The results show that the LED-aided VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction as a function of time, and to interact with the received information.
- Geolocation and wayfinding services using visible light communicationPublication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Vieira, PedroThis paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include finding places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetector with light filtering and demultiplexing properties. Each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered within the overlap discs of each cells underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the users underneath. The effect of the location of the APs is evaluated and a model for the cellular networks is analyzed using orthogonal topologies. A 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is also implemented and the 3D best route to navigate calculated. The results showed that the system allows to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received optimizing the route towards the destination.