Repository logo
 

Search Results

Now showing 1 - 10 of 13
  • Stacked photo-sensing devices based on SiC alloys A non-pixelled architecture for imagers and demultiplexing devices
    Publication . Vieira, Manuela; Louro, Paula; Fernandes, Miguel; Fantoni, Alessandro; Vieira, Manuel Augusto; Costa, João
    In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
  • Indoor wayfinding using visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    Optical wireless communication has been widely studied during the last years in short-range applications. This paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include finding places, like a particular shop or office, guiding users across different floors, through elevators and stairs. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetector with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered within the overlap discs of each cells underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the Aps is evaluated and a model for the different cellular networks is analyzed. Orthogonal topologies are tested, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. Buddy wayfinding services are also implemented. The results showed that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and to optimize the route towards a static or dynamic destination.
  • Dynamic VLC navigation system in crowded buildings
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
  • Optoelectronic digital capture device based on Si/C multilayer heterostructures
    Publication . Vaz da Silva, V; Vieira, Manuel Augusto; Louro, Paula; Vieira, Manuela; Barata, Manuel
    Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
  • Indoors geolocation based on visible light communication
    Publication . Louro, Paula; Vieira, Manuela; Vieira, Manuel Augusto
    This paper presents the use of a selective device based on a-SiC:H/a-Si:H for the photodetection of visible signals emitted by red, green and blue emitters in a Visible Light Communication (VLC) system. The VLC system employs RGB white LEDs to provide both illumination and information transmission. The acquisition and processing of the measured photocurrent allows the identification of the induced optical excitation, which encodes the spatial position. The system is designed so that the detector’s s spatial location can be obtained based on the identification of the received optical signals. The methodology used for the photocurrent signal processing involves Fourier transform analysis for frequency identification and the use of a photodetector with spectral selective properties of wavelength identification. A full characterization of the photodetector is presented together with the physical operation that plays the key role in the detection of the output photocurrent.
  • SiC multilayer structures as light controlled photonic active fflters
    Publication . Vieira, Manuel Augusto; Vieira, Manuela; Louro, Paula; Vaz da Silva, V; Costa, João; Fantoni, Alessandro
    Tunable wavelength division multiplexing converters based on amorphous SiC multilayer photonic active filters are analyzed. The configuration includes two stacked p-i-n structures (p(a-SiC:H)-i'(a-SiC:H)-n(a-SiC:H)-p(a-SiC:H)-i(a-Si:H)-n(a-Si:H)) sandwiched between two transparent contacts. The manipulation of the magnitude is achieved through appropriated front and back backgrounds. Transfer function characteristics are studied both theoretically and experimentally. An algorithm to decode the multiplex signal is established. An optoelectronic model supports the optoelectronic logic architecture. Results show that the light-activated device combines the demultiplexing operation with the simultaneous photodetection and self-amplification of an optical signal. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. Depending on the wavelength of the external background and irradiation side, it acts either as a short- or a long-pass band filter or as a band-stop filter. A two-stage active circuit is presented and gives insight into the physics of the device.
  • Cooperative self-localization and wayfinding services through visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    A Visible Light Communication (VLC) cooperative system that supports guidance services and uses an edge/fog based architecture for wayfinding services is presented. The integrated dynamic navigation system consists of multiple transmitters (luminaries) which transmit the map information and path messages necessary for wayfinding. The luminaires used for downlink transmission are equipped with one of two types of controllers: mesh controllers or cellular controllers, which, respectively, forward messages to other devices in the vicinity or to the central manager. Mobile optical receivers, collect the data, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Uplink transmission is implemented and the best route to navigate through venue calculated. Each luminaire, through VLC, reports its geographic position and specific information to the users, making it available for use. Bidirectional communication is implemented and the best route to navigate through venue calculated. Buddy wayfinding services are also considered. Results indicate that the system is able to perform not just the self-localization, but also infer the travel direction and interact with it, optimizing the route to a static or dynamic destination.
  • Use of a-SiC:H semiconductor-based transducer for glucose sensing through FRET analysis
    Publication . Louro, Paula; Vaz da Silva, V; Vieira, Manuel Augusto; Karmali, Amin; Vieira, Manuela
    Glucose sensing is an issue with great interest in medical and biological applications. One possible approach to glucose detection takes advantage of measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor within a protein which undergoes glucose-induced changes in conformation. This demands the detection of fluorescent signals in the visible spectrum. In this paper we analyzed the emission spectrum obtained from fluorescent labels attached to a protein which changes its conformation in the presence of glucose using a commercial spectrofluorometer. Different glucose nanosensors were used to measure the output spectra with fluorescent signals located at the cyan and yellow bands of the spectrum. A new device is presented based on multilayered a-SiC:H heterostructures to detect identical transient visible signals. The transducer consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructure optimized for the detection of the fluorescence resonance energy transfer between fluorophores with excitation in the violet (400 nm) and emissions in the cyan (470 nm) and yellow (588 nm) range of the spectrum. Results show that the device photocurrent signal measured under reverse bias and using appropriate steady state optical bias, allows the separate detection of the cyan and yellow fluorescence signals presented.
  • Geolocation and wayfinding services using visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Vieira, Pedro
    This paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include finding places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetector with light filtering and demultiplexing properties. Each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered within the overlap discs of each cells underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the users underneath. The effect of the location of the APs is evaluated and a model for the cellular networks is analyzed using orthogonal topologies. A 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is also implemented and the 3D best route to navigate calculated. The results showed that the system allows to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received optimizing the route towards the destination.
  • Detection of change in fluorescence between reactive cyan and the yellow fluorophores using a-SiC:H multilayer transducers
    Publication . Louro, Paula; Vaz da Silva, V; Vieira, Manuel Augusto; Vieira, Manuela
    The transducer consists of a semiconductor device based on two stacked -i-n heterostructures that were designed to detect the emissions of the fluorescence resonance energy transfer between fluorophores in the cyan (470 nm) and yellow (588 nm) range of the spectrum. This research represents a preliminary study on the use of such wavelength-sensitive devices as photodetectors for this kind of application. The device was characterized through optoelectronic measurements concerning spectral response measurements under different electrical and optical biasing conditions. To simulate the fluorescence resonance energy transfer (FRET) pairs, a chromatic time-dependent combination of cyan and yellow wavelengths was applied to the device. The generated photocurrent was measured under reverse and forward bias to read out the output photocurrent signal. A different wavelength-biasing light was also superimposed. Results show that under reverse bias, the photocurrent signal presents four separate levels, each one assigned to the different wavelength combinations of the FRET pairs. If a blue background is superimposed, the yellow channel is enhanced and the cyan suppressed, while under red irradiation, the opposite behavior occurs. So, under suitable biasing light, the transducer is able to detect separately the cyan and yellow fluorescence pairs. An electrical model, supported by a numerical simulation, supports the transduction mechanism of the device.