Repository logo
 

Search Results

Now showing 1 - 7 of 7
  • Indoor wayfinding using visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    Optical wireless communication has been widely studied during the last years in short-range applications. This paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include finding places, like a particular shop or office, guiding users across different floors, through elevators and stairs. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetector with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered within the overlap discs of each cells underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the Aps is evaluated and a model for the different cellular networks is analyzed. Orthogonal topologies are tested, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. Buddy wayfinding services are also implemented. The results showed that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and to optimize the route towards a static or dynamic destination.
  • Wayfinding services in crowded buildings through visible light
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
  • Geolocation and communication in unfamiliar indoor environments through visible light
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    To support people’s wayfinding activities in unfamiliar indoor environments, a method able to generate ceiling landmark route instructions using Visible Light Communication (VLC) is proposed. The system is composed of several transmitters (ceiling luminaries) which send the map information and path messages required to wayfinding. Mobile optical receivers, using joint transmission, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Bidirectional communication between the emitters and the receivers is available in strategic optical access point. Typical scenarios are simulated and include finding places and guiding users across different floors. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used, providing a different data channel for each chip. At the receiver, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by SiC photodetectors with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission become a single cell, in which the optical access point (AP) is located. The coded light signals are interpreted directly by the receivers of the users positioned underneath. The effect of the location of the APs is evaluated and a model for the different cellular networks is analyzed. Orthogonal and hexagonal topologies are tested, and a 3D localization design, demonstrated by a prototype is presented. Uplink transmission is implemented and the 3D best route to navigate through venue calculated. The results show that the system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received and optimize the route towards a static or dynamic destination.
  • Dynamic VLC navigation system in crowded buildings
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper investigates the applicability of an intuitive risk of transmission wayfinding system in public spaces, virtual races, indoor large environments and complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. The system is able to inform the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC optical sensor with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical Access Point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is used, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
  • Cooperative self-localization and wayfinding services through visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    A Visible Light Communication (VLC) cooperative system that supports guidance services and uses an edge/fog based architecture for wayfinding services is presented. The integrated dynamic navigation system consists of multiple transmitters (luminaries) which transmit the map information and path messages necessary for wayfinding. The luminaires used for downlink transmission are equipped with one of two types of controllers: mesh controllers or cellular controllers, which, respectively, forward messages to other devices in the vicinity or to the central manager. Mobile optical receivers, collect the data, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Uplink transmission is implemented and the best route to navigate through venue calculated. Each luminaire, through VLC, reports its geographic position and specific information to the users, making it available for use. Bidirectional communication is implemented and the best route to navigate through venue calculated. Buddy wayfinding services are also considered. Results indicate that the system is able to perform not just the self-localization, but also infer the travel direction and interact with it, optimizing the route to a static or dynamic destination.
  • Wayfinding in complex buildings using visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    This paper investigates the applicability of an intuitive wayfinding system in complex buildings using Visible Light Communication (VLC). Typical scenarios include: finding places, like a particular shop or office, guiding users across different floors, and through elevators and stairs. Data from the sender is encoded, modulated and converted into light signals emitted by the transmitters. Tetra-chromatic white sources are used providing a different data channel for each chip. At the receiver side, the modulated light signal, containing the ID and the 3D geographical position of the transmitter and wayfinding information, is received by a SiC photodetector with light filtering and demultiplexing properties. Since lighting and wireless data communication is combined, each luminaire for downlink transmission becomes a single cell, in which the optical access point (AP) is located in the ceiling and the mobile users are scattered across the overlap discs of each cell, underneath. The light signals emitted by the LEDs are interpreted directly by the receivers of the positioned users. Bidirectional communication is tested. The effect of the location of the Aps is evaluated and a 3D model for the cellular network is analyzed. In order to convert the floorplan to a 3D geometry, a tandem of layers in a orthogonal topology is tested, and a 3D localization design, demonstrated by a prototype implementation, is presented. Uplink transmission is implemented, and the 3D best route to navigate through venue is calculated. Buddy wayfinding services are also considered. The results showed that the dynamic VLC navigation system enables to determine the position of a mobile target inside the network, to infer the travel direction along the time, to interact with received information and to optimize the route towards a static or dynamic destination.
  • Navigation, routing and geolocation through visible light communication
    Publication . Vieira, Manuela; Vieira, Manuel Augusto; Louro, Paula; Fantoni, Alessandro; Vieira, Pedro
    To support people’s wayfinding activities in crowded buildings this paper proposes a method able to generate landmark route and alert instructions using Visible Light Communication .The system is composed of several ceiling luminaries transmitters which send the map information, alerts and the path messages required to wayfinding. The system informs the users, in real time, not only of the best route to the desired destination, through a route without clusters of users, but also of crowded places. Data is encoded, modulated and converted into light signals. An architecture based on a mesh cellular hybrid structure was used. The luminaires are equipped with one of two types of nodes: a “mesh” controller that connects with other nodes in its vicinity and can forward messages to other devices in the mesh, acting like routers nodes in the network and a “mesh/cellular” hybrid controller, that is also equipped with a modem providing IP base connectivity to the central manager services. Each luminaire for downlink can forward messages to other devices or to the central manager services. Mobile optical receivers, collect the data, extracts theirs location to perform positioning and, concomitantly, the transmitted data from each transmitter. Uplink transmission is implemented and the best route to navigate through venue calculated. Buddy wayfinding services are also considered. The results show that the system makes possible not only the self-localization, but also to infer the travel direction and to interact with information received optimizing the route towards a static or dynamic destination.