Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- V(IV), Fe(II), Ni(II) and Cu(II) complexes bearing 2,2,2-tris(pyrazol-1-yl)ethyl methanesulfonate: application as catalysts for the cyclooctane oxidationPublication . Silva, Telma F. S.; Rocha, Bruno G. M.; Guedes Da Silva, M. Fátima C.; Martins, Luisa; Pombeiro, ArmandoWater-soluble compounds [VOCl2{CH3SO2OCH2C(pz)(3)}] (pz = pyrazol-1-yl) 1, [FeO2{CH3SO2OCH2C(pz)(3)}] 2, [NiO2{CH3SO2OCH2C(pz)(3)}] 3 and [Cu{CH3SO2OCH2C(pz)(3)}(2)](OTf)(2) 4 were obtained by reactions between the corresponding metal salts and 2,2,2-tris(pyrazol-1-yl)ethyl methanesulfonate, CH3SO2OCH2C(pz)(3). They were isolated as air-stable solids and fully characterized by IR, FTIR, NMR (for 2), EPR (for 1), ESI-MS(+/-), elemental analysis and (for 4) single-crystal X-ray diffraction. In all, half- (1-3) or full-sandwich (4), compounds the C-scorpionate ligand shows the N,N,N-coordination mode. 3 and 4 appear to provide the first examples of a Ni(II) and a full-sandwich Cu(II) compound respectively, bearing that scorpionate ligand. Compound 3 is the first Ni(II) tris(pyrazol-1-yl)methane type complex to be applied as catalyst for the oxidation of alkanes. Compounds 1-4 exhibit catalytic activity for the peroxidative (with aq. H2O2) oxidation, in water/acetonitrile medium and under mild homogeneous conditions, of cyclooctane to the corresponding alcohol and ketone (yields up to ca. 27%). The effect of the presence of additives, such as nitric acid or pyridine, was studied.
- Enhancing alkane oxidation using Co-doped SnO2 nanoparticles as catalystsPublication . Silva, Telma F.S.; Silvestre, A. J.; Rocha, Bruno G. M.; Nunes, Manuel R.; Monteiro, Olinda; Martins, LuisaA novel eco-friendly KA oil synthesis at room temperature (up to 25% yield) via solvent-free cyclohexane oxidation using Sn1 − xCoxO2 − δ (x = 0, 0.01 or 0.05) nanoparticles as catalyst (TON up to 2 × 103) is here reported. These nanoparticles are the first SnO2-based material able to catalyze the oxidation of alkanes. The most active nanocatalyst was the Sn0.95Co0.05O2 − δ, allowing an easy recovery and reuse, at least for five consecutive cycles, maintaining high selectivity concomitant with 92% of its initial activity.
- New RuII(arene) complexes with halogen-substituted bis- and tris(pyrazol-1-YL)borate ligandsPublication . Orbisaglia, Serena; Di Nicola, Corrado; Marchetti, Fabio; Pettinari, Riccardo; Martins, Luisa; Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Rocha, Bruno G. M.; Kuznetsov, Maxim L.; Pombeiro, Armando; Skelton, Brian; Sobolev, Alexandre; White, Allan H.[RuCl(arene)(-Cl)](2) dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis- and tris(pyrazolyl)borate ligands [Na(BpBr3)], [Tl(TpBr3)], and [Tl(Tp(iPr,4Br))]. Mononuclear neutral complexes [RuCl(arene)((2)-BpBr3)] (1: arene=p-cymene (cym); 2: arene=hexamethylbenzene (hmb); 3: arene=benzene (bz)), [RuCl(arene)((2)-TpBr3)] (4: arene=cym; 6: arene=bz), and [RuCl(arene)((2)-Tp(iPr,4Br))] (7: arene=cym, 8: arene=hmb, 9: arene=bz) have been always obtained with the exception of the ionic [Ru-2(hmb)(2)(-Cl)(3)][TpBr3] (5), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru(CH3OH)(cym)((2)-BpBr3)][X] (10: X=PF6, 12: X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)((2)-BpBr3)] (11) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1-12 have been characterized by analytical and spectroscopic data (IR, ESI-MS, H-1 and (CNMR)-C-13 spectroscopy). The structures of the thallium and calcium derivatives of ligand TpBr3, [Tl(TpBr3)] and [Ca(dmso)(6)][TpBr3](2)2DMSO, of the complexes 1, 4, 5, 6, 11, and of the decomposition product [RuCl(cym)(Hpz(iPr,4Br))(2)][Cl] (7) have been confirmed by using single-crystal X-ray diffraction. Electrochemical studies showed that 1-9 and 11 undergo a single-electron (RuRuIII)-Ru-II oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron-donor characters of the bis- and tris(pyrazol-1-yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for BpBr3, TpBr3, and Tp(iPr,4Br). Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal-centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the (3)-binuclear complex 5 (instead of the mononuclear 5) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.
- Supported gold nanoparticles as reusable catalysts for oxidation reactions of industrial significancePublication . Martins, Luisa; Carabineiro, Sonia Alexandra Correia; Wang, Jiawei; Rocha, Bruno G. M.; Maldonado Hódar, Francisco Jose; Pombeiro, ArmandoThe efficient single-pot oxidative functionalisation of alkanes and alcohols under mild conditions was catalysed by Au nanoparticles supported on Al2O3, Fe2O3, ZnO and TiO2. The obtained materials were tested for cyclohexane oxidation under mild conditions (60 °C, atmospheric pressure) using an environmentally friendly oxidant (H2O2). The materials were also tested in the oxidation of benzyl alcohol and methylbenzyl alcohol in the presence of tert-butylhydroperoxide as the oxidant under microwave irradiation. With regard to cyclohexane oxidation, all materials were highly selective towards the formation of cyclohexanol and cyclohexanone. No traces of byproducts were detected under the optimised conditions. Au on Fe2O3 led to the best results (13.5 % yield). This system showed an interesting almost exclusive formation of cyclohexanol at 4 h reaction time. Catalyst recycling was tested in up to five cycles, and the catalyst maintained almost the original level of activity after three cycles with no significant leaching. With regard to oxidation of benzyl alcohol and methylbenzyl alcohol, all materials were highly selective towards the formation of benzaldehyde or acetophenone, respectively. No traces of byproducts were detected. Addition of Au increased alcohol conversion from 5 (TiO2) to 91 % (Au/TiO2). The recycling of Au/TiO2 was tested in up to 10 cycles, and the catalytic activity remained high in the first four cycles.