Loading...
7 results
Search Results
Now showing 1 - 7 of 7
- The contribution of submarine optical fiber telecom cables to the monitoring of earthquakes and tsunamis in the NE AtlanticPublication . Matias, Luis; Carrilho, Fernando; Sá, Vasco; Omira, Rachid; Niehus, Manfred; Corela, Carlos; Barros, José; Omar, YasserRecent developments in optical fiber cable technology allows the use of existing and future submarine telecommunication cables to provide seismic and sea-level information. In this work we study the impact of three different technologies, 1) SMART, Science Monitoring and Reliable Telecommunications; 2) DAS, Distributed Acoustic Sensing, and; 3) LI, Laser Interferometry, for effective earthquake and tsunami monitoring capabilities on the NE Atlantic. The SW Iberia is the source area of the largest destructive earthquake that struck Europe since the year 1000, the November 1, 1755 event. This earthquake generated also a destructive tsunami affecting the whole basin. This tectonically active area is crossed by the CAM (Continent-Azores-Madeira) submarine cable on a ring configuration. Due to the end of cable lifetime the current cables need to be replaced by 2024 and the technical requirements must be defined in mid-2021. The Azores archipelago is the focus of frequent seismic crizes and occasionally destructive earthquakes. A common feature of these seismic events is that they take place offshore, an area that is difficult to monitor from land-based instruments. In this work we evaluate the contribution of SMART cables to the earthquake monitoring and tsunami early warning system in SW Iberia and show how DAS and LI can improve earthquake monitoring on two active domains of the Azores. For tsunami early warning, we show how the offshore sea-level measurements provide clean offshore tsunami records when compared to coastal observations by tide gauges, which greatly improves the efficiency of the system. For earthquake monitoring, the data processing operational routine is examined using Monte-Carlo simulations. These take into consideration the errors in phase picking and the uncertainty on the 1D velocity model used for earthquake location. Quality of earthquake location is examined using the difference between the true location and the centroid of the computed epicenters and by the overall ellipse of uncertainty obtained from 100 runs. The added value provided by instrumented submarine telecommunication cables to mitigate earthquake and tsunami risk demonstrated in this work will help authorities and the society in general to take the political decisions required for its full implementation worldwide.
- Thermal nature of mantle upwellings below the ibero-western Maghreb region inferred from teleseismic tomographyPublication . Civiero, Chiara; Custodio, Susana; Rawlinson, Nicholas; Strak, Vincent; Silveira, Graça; Arroucau, Pierre; Corela, CarlosIndependent models of P wave and S wave velocity anomalies in the mantle derived from seismic tomography help to distinguish thermal signatures from those of partial melt, volatiles, and compositional variations. Here we use seismic data from SW Europe and NW Africa, spanning the region between the Pyrenees and the Canaries, in order to obtain a new S-SKS relative arrival-time tomographic model of the upper mantle below Iberia, Western Morocco, and the Canaries. Similar to previous P wave tomographic results, the S wave model provides evidence for (1) subvertical upper-mantle low-velocity structures below the Canaries, Atlas Ranges, and Gibraltar Arc, which are interpreted as mantle upwellings fed by a common lower-mantle source below the Canaries; and (2) two low-velocity anomalies below the eastern Rif and Betics that we interpret as the result of the interaction between quasi-toroidal mantle flow induced by the Gibraltar slab and the mantle upwelling behind it. The analysis of teleseismic P wave and S wave arrival-time residuals and the conversion of the low-velocity anomalies to temperature variations suggest that the upwellings in the upper mantle below the Canaries, Atlas Ranges, and Gibraltar Arc system may be solely thermal in nature, with temperature excesses in the range similar to 100-350 degrees C. Our results also indicate that local partial melting can be present at lithospheric depths, especially below the Atlas Ranges. The locations of thermal mantle upwellings are in good agreement with those of thinned lithosphere, moderate to high heat-flow measurements, and recent magmatic activity at the surface.
- A common deep source for upper-mantle upwellings below the Ibero-western Maghreb region from teleseismic P-wave travel-time tomographyPublication . Civiero, Chiara; Strak, Vincent; Custodio, Susana; Silveira, Graça; Rawlinson, Nicholas; Arroucau, Pierre; Corela, CarlosUpper-mantle upwellings are often invoked as the cause of Cenozoic volcanism in the Ibero-western Maghreb region. However, their nature, geometry and origin are unclear. This study takes advantage of dense seismic networks, which cover an area extending from the Pyrenees in the north to the Canaries in the south, to provide a new high-resolution P-wave velocity model of the upper-mantle and topmost lower-mantle structure. Our images show three subvertical upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc, which appear to be rooted beneath the upper-mantle transition zone (MTZ). Two other mantle upwellings beneath the eastern Rif and eastern Betics surround the Gibraltar subduction zone. We propose a new geodynamic model in which narrow upper-mantle upwellings below the Canaries, the Atlas Ranges and the Gibraltar Arc rise from a laterally-propagating layer of material below the MTZ, which in turn is fed by a common deep source below the Canaries. In the Gibraltar region, the deeply rooted upwelling interacts with the Gibraltar slab. Quasi-toroidal flow driven by slab rollback induces the hot mantle material to flow around the slab, creating the two low-velocity anomalies below the eastern Betics and eastern Rif. Our results suggest that the Central Atlantic plume is a likely source of hot mantle material for upper-mantle upwellings in the Ibero-western Maghreb region.
- Ambient seismic noise tomography of SW Iberia integrating seafloor- and land-based dataPublication . Corela, Carlos; Silveira, Graça; Matias, Luis; Schimmel, Martin; Geissler, WolframWe used ambient seismic noise recorded by 24 Broadband Ocean Bottom Seismometers (OBS) deployed in the Gulf of Cadiz during the EC funded NEAREST project and seven broadband land stations located in the South of Portugal to image the sedimentary and crustal structure beneath the Eastern Atlantic and SW Iberia. We computed ambient noise cross-correlations to obtain empirical Green's functions (EGFs) between all station pairs using land seismometers and both OBS sensors, seismometers and hydrophones. Despite the great difference in the recording conditions and local crustal structure between the OBSs and land stations, we could compute EGFs, by applying a linear cross-correlation with running absolute mean average time normalization, followed by a time-frequency phase weighted stack. Dispersion analysis was then applied to the EGFs, between 4 and 20s period. The obtained dispersion curves allowed mapping the lateral variation of Rayleigh-wave group velocities, as a function of period. Finally, dispersion curves extracted from each cell of the 2D group velocity maps were inverted, as a function of depth, to obtain the 3D distribution of the shear-wave velocities. The 3-D shear wave velocity model, computed from joint inversion of OBSs and land stations data allowed to estimate the thickness of sediments and crust and the Moho depth. Despite the gap that exists between the OBSs and land station locations, our model displays a good correlation with the known geological structure. The derived sedimentary layer and crustal thicknesses and the obtained Moho depth are locally in agreement with the models proposed by other studies using near vertical, refraction and wide-angle seismic profiling. We conclude that ambient noise tomography could be a valuable tool to image oceanic domains, and also that it is possible to integrate seafloor- and land-based stations to derive a structure model in the transition domain between continent and ocean.
- Gondwana breakup: messages from the North Natal ValleyPublication . Moulin, Maryline; Aslanian, Daniel; Evain, Mikael; Lepretre, Angelique; Schnurle, Philippe; Verrier, Fanny; Thompson, Joseph; De Clarens, Philippe; LEROY, Sylvie; Dias, Nuno; Afilhado, Alexandra; Apprioul, R.; Bronner, A.; Castilla, R.; Corela, Carlos; Crozon, J.; Davy, C.; D'acremont, E.; Droz, Laurence; Duarte, J. L.; Fernagu, P.; Ferrant, A.; Fischer, M.; Franke, D.; Inguane, H.; Jorry, Stephan; Jouet, G.; Loureiro, Afonso; Le Bouteiller, P.; Le Bihan, C.; Mahanjane, S.; Moocroft, D.; Pelleau, P.; Picot, M.; Pierre, D.; Pitel, M.; Rabineau, M.; Rombe, C.; Roudaut, M.; Senkans, A.; Toucanne, SamuelThe Natal Valley, offshore Mozambique, is a key area for understanding the evolution of East Gondwana. Within the scope of the integrated multidisciplinary PAMELA project, we present new wide-angle seismic data and interpretations, which considerably alter Geoscience paradigms. These data reveal the presence of a 30-km-thick crust that we argue to be of continental nature. This falsifies all the most recent palaeo-reconstructions of the Gondwana. This 30-km-thick continental crust 1,000 m below sea level implies a complex history with probable intrusions of mantle-derived melts in the lower crust, connected to several occurrences of magmatism, which seems to evidence the crucial role of the lower continental crust in passive margin genesis.
- The Portuguese national seismic network: products and servicesPublication . Carrilho, Fernando; Custodio, Susana; Bezzeghoud, Mourad; Oliveira, Carlos; Marreiros, Célia; Vales, Dina; Alves, Paulo; Pena, Areosa; Madureira, Guilherme; Escuer, Maria; Silveira, Graça; Corela, Carlos; Matias, Luis; Silva, Matilde; Veludo, Idalina; Dias, Nuno; Loureiro, Afonso; Borges, J. F.; Caldeira, Bento; Wachilala, Piedade; Fontiela, JoaoPortugal, located in the southwest region of the Eurasian plate, has been affected by several destructive earthquakes throughout its history, the most well-known being the 1755 Great Lisbon earthquake. The seismicity of the territory, both in the mainland and in the Azores and Madeira islands, has prompted the continuous development of seismic monitoring, from the first known macroseismic inquiry, following the 1755 Great Lisbon earthquake, to the current state-of-the-art seismic network. Once scattered in separate efforts, at present, most seismic stations in Portugal relay its data to a common data center, at Instituto Português do Mar e da Atmosfera, where data are automatically processed for the downstream generation of both manually revised and automatically generated products and services. In this article, we summarize the evolution of the permanent seismic network, its current status, the products and services that are publicly available, a recent effort of rapid deployment of a dense network following a mainshock, and state-of-the-art ocean-bottom seismometer developments.
- Lithospheric structuration onshore-offshore of the Sergipe-Alagoas passive margin, NE Brazil, based on wide-angle seismic dataPublication . Pinheiro, J. M.; Schnurle, P.; Evain, Mikael; Afilhado, Alexandra; Gallais, F.; Klingelhoefer, Frauke; Loureiro, Afonso; Fuck, R.; Soares, J.; Cupertino, J. A.; Viana, Adriano Roessler; Rabineau, Marina; Baltzer, A.; Benabdellouahed, M.; Dias, Nuno; Moulin, Maryline; Aslani, D.; Morvan, L.; Maze, J. P.; Pierre, D.; Roudaut-Pitel, M.; Rio, I.; Alves, D.; Barros, P.; Biari, Youssef; Corela, Carlos; Crozon, J.; Duarte, J. L.; Ducatel, C.; Falcão, C.; Fernagu, P.; Le Piver, D.; Mokeddem, Z.; Pelleau, P.; Rigoti, C.; Roest, W.; Roudaut, M.The structure and nature of the crust underlying the Camamu-Almada-Jequitinhonha-Sergipe-Alagoas basins System, in the NE Brazilian margin, were investigated based on the interpretation of 12 wide-angle seismic profiles acquired during the SALSA (Sergipe ALagoas Seismic Acquisition) experiment in 2014. In this work, we present two 220-km-long NW-SE combined wide-angle and reflection seismic profiles, SL 01 and SL 02, that have been acquired using 15 ocean-bottom-seismometers along each profile, offshore the southern part of the Sergipe Alagoas Basin (SAB), north of the Vaza-Barris Transfer zone. The SL 02 has a 150-km long inland continuation with 20 land-seismic-stations until the Sergipano Fold Belt (SFB). Wide-angle seismic forward modeling allows us to precisely divide the crust in three domains: beneath the continental shelf, a similar to 100 km wide necking zone is imaged where the continental crust thins from similar to 35 km on the Unthinned Continental Domain, which displays a three-layered crust structure, to less than 8 km on the Oceanic Crust Domain. In the necking zone, the upper and the middle layers thin dramatically and almost disappear, while the Moho discontinuity shows clear PmPs. The Continental-Oceanic Crust Boundary (COB) is located at similar to 80 km from the coastline and is marked by intracrustal seismic reflectors and changes in the seismic velocity, showing a sharp transition. On profile SL02, the oceanic crust is perturbed by a volcanic edifice together with an anomalous velocity zone underneath the area.