Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- Cytostatics occupational exposure: genotoxic effects assessmentPublication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, M. C.; Brito, MiguelThe use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Although the potential therapeutic benefits of hazardous drugs outweigh the risks of side effects for ill patients, exposed health care workers can have the same side effects with no therapeutic benefit. The exposure to these substances is epidemiologically linked to cancer and nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
- Exposure and genotoxicity assessment methodologies: the case of formaldehyde occupational exposurePublication . Viegas, Susana; Ladeira, Carina; Gomes, Mário; Nunes, Carla; Brito, Miguel; Prista, JoãoFormaldehyde (FA) ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to FA occupationally. Recently, based on the correlation with nasopharyngeal cancer in humans, the International Agency for Research on Cancer (IARC) confirmed the classification of FA as a Group I substance. Considering the epidemiological evidence of a potential association with leukemia, the IARC has concluded that FA can cause this lymphoproliferative disorder. Our group has developed a method to assess the exposure and genotoxicity effects of FA in two different occupational settings, namely FAbased resins production and pathology and anatomy laboratories. For exposure assessment we applied simultaneously two different techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection Equipment with simultaneously video recording. Genotoxicity effects were measured by cytokinesis-blocked micronucleus assay in peripheral blood lymphocytes and by micronucleus test in exfoliated oral cavity epithelial cells, both considered target cells. The two exposure assessment techniques show that in the two occupational settings peak exposures are still occurring. There was a statistical significant increase in the micronucleus mean of epithelial cells and peripheral lymphocytes of exposed individuals compared with controls. In conclusion, the exposure and genotoxicity effects assessment methodologies developed by us allowed to determine that these two occupational settings promote exposure to high peak FA concentrations and an increase in the micronucleus mean of exposed workers. Moreover, the developed techniques showed promising results and could be used to confirm and extend the results obtained by the analytical techniques currently available.
- Application of alkaline comet assay in human biomonitoring for genotoxicity: a study on occupational exposure to cytostaticsPublication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, M. C.; Brito, MiguelThe use of cytostatics drugs in anticancer therapy is increasing. Health care workers can be occupationally exposed to these drugs classified as carcinogenic, mutagenic or teratogenic. Cytostatics drugs are a heterogeneous group of chemicals widely used in the treatment of cancer, nevertheless have been proved to be also mutagens, carcinogens and teratogens. Workers may be exposed to this drug, being in the hospital settings the main focus dwelled upon the pharmacy, and nursing personnel. Alkaline comet assay is one of the most promising short-term genotoxicity assays for human risk assessment, being recommended to monitor populations chronically exposed to genotoxic agents. DNA glycosylase (OGG1) represents the main mechanism of protecting the integrity of the human DNA with respect to 8-OHdG, the most well studied biomarker of oxidative damage.
- Influence of serum levels of vitamins A, D, and E as well as vitamin D receptor polymorphisms on micronucleus frequencies and other biomarkers of genotoxicity in workers exposed to formaldehydePublication . Ladeira, Carina; Pádua, Mário; Veiga, Luísa; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C; Brito, MiguelBackground/Aim: Formaldehyde is classified as carcinogenic to humans, making it a major concern, particularly in occupational settings. Fat-soluble vitamins, such as vitamins A, D, and E, are documented as antigenotoxic and antimutagenic and also correlate with the cell antioxidant potential. This study investigates the influence of these vitamins on genotoxicity biomarkers of formaldehyde-exposed hospital workers. Methods: The target population were hospital workers exposed to formaldehyde (n = 55). Controls were nonexposed individuals (n = 80). The most used genotoxicity biomarkers were the cytokinesis-block micronucleus assay for lymphocytes and the micronucleus test for exfoliated buccal cells. Vitamins A and E were determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD) and vitamin D receptor (VDR) polymorphisms by real-time PCR. Results: Significant correlations were found between genotoxicity biomarkers and between vitamins A and E in controls. Multiple regression showed that vitamin A was significantly associated with a higher mean of nucleoplasmic bridges (p < 0.001), and vitamin E was significantly associated with a decreased frequency of nuclear buds (p = 0.045) in the exposed group. No effect of vitamin D was observed. The VDRBsmI TT genotype carriers presented higher means of all the genotoxicity biomarkers; however, we found no significant associations. Conclusions: The study suggests that vitamin levels may modulate direct signs of genotoxicity.
- Relation between DNA damage measured by comet assay and OGG1 Ser326Cys polymorphism in antineoplastic drugs biomonitoringPublication . Ladeira, Carina; Viegas, Susana; Pádua, Mário; Carolino, Elisabete; Gomes, Manuel C.; Brito, MiguelAntineoplastic drugs are hazardous chemical agents used mostly in the treatment of patients with cancer, however health professionals that handle and administer these drugs can become exposed and develop DNA damage. Comet assay is a standard method for assessing DNA damage in human biomonitoring and, combined with formamidopyrimidine DNA glycosylase (FPG) enzyme, it specifically detects DNA oxidative damage. The aim of this study was to investigate genotoxic effects in workers occupationally exposed to cytostatics (n = 46), as compared to a control group with no exposure (n = 46) at two Portuguese hospitals, by means of the alkaline comet assay. The potential of the OGG1 Ser326Cys polymorphism as a susceptibility biomarker was also investigated. Exposure was evaluated by investigating the contamination of surfaces and genotoxic assessment was done by alkaline comet assay in peripheral blood lymphocytes. OGG1 Ser326Cys (rs1052133) polymorphism was studied by Real Time PCR. As for exposure assessment, there were 121 (37%) positive samples out of a total of 327 samples analysed from both hospitals. No statistically significant differences (Mann-Whitney test, p > 0.05) were found between subjects with and without exposure, regarding DNA damage and oxidative DNA damage, nevertheless the exposed group exhibited higher values. Moreover, there was no consistent trend regarding the variation of both biomarkers as assessed by comet assay with OGG1 polymorphism. Our study was not statistically significant regarding occupational exposure to antineoplastic drugs and genetic damage assessed by comet assay. However, health professionals should be monitored for risk behaviour, in order to ensure that safety measures are applied and protection devices are used correctly.
- Biomonitorization in hospital settings with cytostatics occupational exposurePublication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, M. C.; Brito, MiguelExposure in a hospital setting is normally due to the use of several antineoplastic drugs simultaneously. Nevertheless, the effects of such mixtures at the cell level and on human health in general are unpredictable and unique due to differences in practice of hospital oncology departments, in the number of patients, protection devices available, and the experience and safety procedures of medical staff. Health care workers who prepare or administer hazardous drugs or who work in areas where these drugs are used may be exposed to these agents in the air, on work surfaces, contaminated clothing, medical equipment, patient excreta, and other surfaces. These workers include specially pharmacists, pharmacy technicians, and nursing personnel. Exposures may occur through inhalation resulting from aerosolization of powder or liquid during reconstitution and spillage taking place while preparing or administering to patients, through Cytokinesis-block micronucleus test (CBMN) is extensively used in biomonitoring, since it determines several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomeres fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA.
- The influence of genetic polymorphisms in XRCC3 and ADH5 genes on the frequency of genotoxicity biomarkers in workers exposed to formaldehydePublication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C.; Brito, MiguelThe International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.
- Selenium role in an human biomonitoring study applied to occupational healthPublication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C.; Brito, MiguelSelenium functions as a co-factor for the reduction of antioxidant enzymes and is an important component of antioxidant enzymes. Dietary selenium significantly inhibits the induction of skin, liver, colon, and mammary tumours in experimental animals by a number of different carcinogens, as well as the induction of mammary tumours by viruses. Selenium shows a “U” shaped curve for functionality, whereby too little is as damaging as too much. At optimal levels, selenium may protect against the formation of DNA adducts, DNA or chromosome breakage, chromosome gain or loss, mitochondrial DNA, and telomere length and function. Aim of study: Investigate the relation between selenium and genotoxic effects in a human biomonitoring study applied to occupational health.