Repository logo
 

Search Results

Now showing 1 - 10 of 11
  • Effects of exposure to formaldehyde and tobacco smoking on genotoxicity biomarkers
    Publication . Ladeira, Carina; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde (FA) is a colour less gas widely used in the industry and hospitals as an aqueous solution, formalin. It is extremely reactive and induces various genotoxic effects in proliferating cultured mammalian cells. Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The cytokinesis-blocked micronucleus assay (CBMN) in human lymphocytes is one of the most commonly used methods for measuring DNA damage, namely the detection of micronucleus, nucleoplasmic bridges, and nuclear buds.
  • Exposição profissional a formaldeído em laboratórios de anatomia patológica: que realidade em Portugal?
    Publication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Prista, João; Gomes, Manuel C.; Brito, Miguel
    O formaldeído é um gás incolor, solúvel na água e que reage rapidamente com o local de contacto. É utilizado nos laboratórios de Anatomia Patológica (AP) como fixador de células e tecidos - importante local de exposição ocupacional ao formaldeído, nomeadamente por médicos patologistas, técnicos de AP e auxiliares de acção médica. Objectivos do estudo: conhecer a exposição a formaldeído nos laboratórios hospitalares de Anatomia Patológica em Portugal; comparar a frequência de MN em linfócitos do sangue periférico e em células esfoliadas da mucosa bucal dos trabalhadores expostos a formaldeído nos laboratórios de AP – patologistas, técnicos de AP e auxiliares com controlos.
  • Effects of the interaction of tobacco smoke and alcohol consumption on buccal micronucleus in workers exposed occupationally to formaldehyde
    Publication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Prista, João; Gomes, Manuel C.; Brito, Miguel
    Occupational exposure to formaldehyde (FA) has been shown to induce nasopharyngeal cancer and has been classified as carcinogenic to humans (group 1) on the basis of sufficient evidence in humans. Tobacco smoke has been associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Alcohol is a recognized agent that influence cells in a genotoxic form, been citied as a strong agent with potential in the development of carcinogenic lesions. Epidemiological evidence points to a strong synergistic effect between cigarette smoking and alcohol consumption in the induction of cancers in the oral cavity. Approximately 90% of human cancers originate from epithelial cells. Therefore, it could be argued that oral epithelial cells represent a preferred target site for early genotoxic events induced by carcinogenic agents entering the body via inhalation and ingestion. The MN assay in buccal cells was also used to study cancerous and precancerous lesions and to monitor the effects of a number of chemopreventive agents.
  • Evaluation of the influence of the ADH3 ILE349VAL polymorphism in the frequency of genotoxicity biomarkers in workers exposed to formaldehyde and tobacco smoking
    Publication . Ladeira, Carina; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde (FA) is a colourless gas widely used in the industry and hospitals as an aqueous solution, formalin. It is extremely reactive and induces various genotoxic effects in proliferating cultured mammalian cells. Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. Genetic polymorphisms in enzymes involved in the metabolism are very important and can make changes in the individual susceptibility to disease. Alcohol dehydrogenase class 3 (ADH3), also known as formaldehyde dehydrogenase dependent of glutathione, is the major enzyme involved in the formaldehyde oxidation, especially in the buccal mucosa. The polymorphism in study is a substitution of an isoleucine for a valine in codon 349. The cytokinesis-blocked micronucleus assay (CBMN) in human lymphocytes is one of the most commonly used methods for measuring DNA damage, namely the detection of micronucleus, nucleoplasmic bridges, and nuclear buds, classified as genotoxicity biomarkers.
  • Interaction of formaldehyde and tobacco smoking in the frequency of micronucleus and the XRCC3 Thr241Met polymorphism
    Publication . Ladeira, Carina; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde is classified by IARC as carcinogenic to humans (nasopharyngeal cancer). Tobacco smoke has been epidemiologically associated to a higher risk of development of cancer, especially in the oral cavity, larynx and lungs, as these are places of direct contact with many carcinogenic tobacco’s compounds. XRCC3 is involved in homologous recombination repair of cross-links and chromosomal double-strand breaks (Thr241Met polymorphism). The aim of the study is to determine whether there is an in vivo association between genetic polymorphism of the gene XRCC3 and the frequency of genotoxicity biomarkers in subjects exposed or not to formaldehyde and with or without tobacco consumption.
  • Genotoxicity biomarkers in occupational exposure to formaldehyde: the case of histopathology laboratories
    Publication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Prista, João; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde, classified by the IARC as carcinogenic in humans and experimental animals, is a chemical agent that is widely used in histopathology laboratories. The exposure to this substance is epidemiologically linked to cancer and to nuclear changes detected by the cytokinesis-block micronucleus test (CBMN). This method is extensively used in molecular epidemiology, since it provides information on several biomarkers of genotoxicity, such as micronuclei (MN), which are biomarkers of chromosomes breakage or loss, nucleoplasmic bridges (NPB), common biomarkers of chromosome rearrangement, poor repair and/or telomere fusion, and nuclear buds (NBUD), biomarkers of elimination of amplified DNA. The aim of this study is to compare the frequency of genotoxicity biomarkers, provided by the CBMN assay in peripheral lymphocytes and the MN test in buccal cells, between individuals occupationally exposed and non-exposed to formaldehyde and other environmental factors, namely tobacco and alcohol consumption. The sample comprised two groups: 56 individuals occupationally exposed to formaldehyde (cases) and 85 unexposed individuals (controls), from whom both peripheral blood and exfoliated epithelial cells of the oral mucosa were collected in order to measure the genetic endpoints proposed in this study. The mean level of TWA8h was 0.16±0.11ppm (
  • Formaldehyde's genotoxicity effects in pathology anatomy technologists and medical pathologists
    Publication . Ladeira, Carina; Viegas, Susana; Prista, J.; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde (FA) had been considered to be carcinogenic by the International Agency for Research on Cancer (group1), on the basis of sufficient evidence both in humans and in experimental animals, making it a subject of major environmental concern, especially in the occupational context. Manifold in vitro studies clearly indicated that FA is genotoxic, inducing various genotoxic effects in proliferating cultured mammalian cells. Cytokinesis-blocked micronucleus (CBMN) assay is used extensively in molecular epidemiology, and the chromosomal alterations most reported and studied by the CBMN are: micronucleus (MN), nucleoplasmic bridges (NPB) and nuclear buds (NBUDs). The pathology anatomy laboratories are work places that manipulate routinely FA and pathology anatomy technologists and pathologists contact daily with this chemical compound particularly in the macroscopic exam and grossing procedures. The aim of this study was to identify genotoxicity biomarkers in the set workers groups, such as micronucleus (MN), nucleoplasmic bridges (NPB) and nuclear buds (NBUD) in peripheral blood lymphocytes.
  • Genotoxicity biomarkers in occupational to formaldehyde in pathology anatomy laboratories
    Publication . Ladeira, Carina; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde (FA) the most simple and reactive of all aldehydes, is a colorless, reactive and readily polymerizing gas at normal temperature. It has a pungent, suffocating odour that is recognized by most human subjects at concentrations below 1ppm. According to the Report on Carcinogens, FA ranks 25th in the overall U.S. chemical production with more than 11 billion pounds (5 million tons) produced each year. Is an important industrial compound that is used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives. It has also applications as a disinfectant, preservative and is used in cosmetics. Estimates of the number of persons who are occupationally exposed to FA indicate that, at least at low levels, may occur in a wide variety of industries. The occupational settings with most extensive use of formaldehyde is in the production of resins and in anatomy and pathology laboratories. Several studies reported a carcinogenic effect in humans after inhalation of FA, in particular an increased risk for nasopharyngeal cancer. Nowadays, the International Agency for Research on Cancer (IARC) classifies FA as carcinogenic to humans (group 1), on the basis of sufficient evidence in humans and sufficient evidence in experimental animals. Manifold in vitro studies clearly indicated that FA is genotoxic. FA induced various genotoxic effects in proliferatin cultured mammalian cells. A variety of evidence suggests that the primary DNA alterations after FA exposure are DNA-protein crosslinks. Incomplete repair of DPX can lead to the formation of mutations.
  • Polimorfismos genéticos no gene XRCC3 e dano no DNA em trabalhadores expostos ocupacionalmente a formaldeído
    Publication . Ladeira, Carina; Viegas, Susana; Carolino, Elisabete; Gomes, Manuel C.; Brito, Miguel
    A exposição a formaldeído (FA), classificado como cancerígeno pela International Agency for Cancer Research (IARC), está epidemiologicamente associada a cancro e a alterações nucleares detectáveis pelo ensaio dos micronúcleos por bloqueio da citocinese (CBMN). Este método permite determinar vários marcadores de genotoxicidade, nomeadamente micronúcleos – biomarcadores de quebra ou perda de cromossomas; pontes nucleoplásmicas – biomarcador de re-arranjo cromossómico, pouca reparação e fusão de telómeros e, protusões nucleares – biomarcador de DNA amplificado. O gene X-ray repair cross-complementing group 3 (XRCC3) está envolvido na reparação de ligações cruzadas na recombinação de homólogos e quebras na cadeia dupla de DNA. Foi reportado pelo menos um polimorfismo no gene, o Thr241Met que tem sido associado a um aumento do dnao no DNA em vários estudos.
  • Occupational exposure to formaldehyde: effects of years of exposure in the frequency of micronucleus
    Publication . Ladeira, Carina; Viegas, Susana; Nunes, Carla; Malta-Vacas, Joana; Gomes, Mário; Mendonça, Paula; Prista, João; Gomes, Manuel C.; Brito, Miguel
    Formaldehyde: an important industrial compound used in the manufacture of synthetic resins and chemical compounds such as lubricants and adhesives; also applied as a disinfectant, preservative and in cosmetics productions; relevant workplace exposure to FA also occurs in anatomy, pathology and in mortuaries; classified by IARC as carcinogenic to humans (Group 1), based on sufficient evidence in humans and experimental animals; manifold in vitro studies indicated that FA can induce genotoxic effects in proliferating cultured mammalian cells. Aim of the study: to evaluate if years of exposure induced a genotoxic biomarkers increase, namely MN in lymphocytes and buccal cells, in workers occupationally exposed to FA (factory and pathology anatomy laboratory).