Repository logo
 

Search Results

Now showing 1 - 10 of 14
  • Load characterization on the joints of the A320 engine inlet cowl acoustic panel
    Publication . Conceição, Bruno; Anes, Vitor; Reis, Luis
    Aircraft operate in environments in which the components are subject to large temperature and pressure variations. In aircraft structures such as the engine nacelles, composed by several components and different materials, the presence of wear and corrosion becomes noticeable due to their operation in such environments. Corrective actions must be employed to the components which present this kind of problems. The acoustic panels of the inlet cowl of the Airbus A320/A321, present corrosion problems on the aluminium doublers of the joints. In order to develop a corrective action to the joint of the acoustic panels, the analysis of the mechanical behaviour and forces acting on the joint must be carried out. In this work, a methodology involving Computational Fluid Dynamics, Finite Element Method and Computer Aided Design tools is developed in order to evaluate the mechanical behaviour of the acoustic panels joint. The assessment of the aerodynamic loads acting on the inlet cowl was performed using STAR CCM+ software. The structural analysis of the joint members of the acoustic panels was made with the use of FEM tools in ANSYS Workbench software. The critical steps involved in the analysis are explained. Obtained results are discussed and conclusions are presented.
  • Bonded joints of dissimilar adherends at very low temperatures - An adhesive selection approach
    Publication . Anes, Vitor; Pedro, R.; Henriques, E.; Freitas, M.; Reis, L.
    Maintenance, repair and overhaul companies have been reporting corrosion failure events in the Airbus A320 CFM56-5b intakes. These intakes are attached to the power plant frame by a dissimilar material bonded joint, where liquid shim adhesive is used to avoid the dielectric formation between dissimilar materials. In previous works, the authors reported that the A320 intakes corrosion is a result of the adhesive inability to avoid the dielectric formation, which is a result of micro-cracks formation within the adhesive layer. The main reason that lead to these cracks is the adhesive aging and thermal cycling at very low temperatures, which quite often reach values lower than -50ºC. This paper studies the effect of negative thermal loading on dissimilar materials bonded joints. Two epoxy adhesives are studied and compared, namely the Hysol EA-934, which is the adhesive currently used in the A320 Airbus intakes, and the Hysol EA-9394, a second generation adhesive candidate to replace the actual adhesive. A numerical study was performed in order to simulate the adhesive joint using a finite element analysis commercial package, where several hypotheses were explored. These hypotheses where focused on the effects of several factors on the adhesive layer stress distribution. Factors such as temperature range, boundary conditions, variation of the coefficient of thermal expansion with temperature, and interfacial cracks between the adhesive layer and dissimilar adherend materials were analyzed. Results show that very low temperatures have a negative impact on the adhesives strength and micro-cracks formation may result from thermal loads below zero degrees Celsius, even for adhesives without any aging. Moreover, low temperatures in dissimilar materials bonded joints may create stress states that surpass the adhesive lap shear strength. Some conclusions are drawn regarding adhesive selection for dissimilar materials bonded joints in order to overcome these issues.
  • Failure mode analysis of a 1.9 turbo diesel engine crankshaft
    Publication . Mateus, J.; Anes, Vitor; Galvão, Ivan; Reis, Luis
    This paper reports a failure mode analysis of a 1900 cm(3) turbo diesel engine of a well-known commercial brand. The engine is a supercharged diesel engine with turbocharger, producing a maximum power of 81 kW; it was produced in 1999 and collapsed at 120,000 km without warning. A fracture occurred at the crankpin n degrees 1 of the crankshaft in the region of web-fillet. Crankshafts are mechanical power transmission components with complex geometries and experience multiaxial stress states in main journals and crankpins. The objective of this work is to determine the root cause that led to the crankshaft collapse. A fractographic, metallographic, and numeric analysis were performed to understand the crankshaft failure mode and its mechanical mechanisms. Results show that the crankshaft failure resulted from a fatigue process governed by normal stresses raised by two possible processes, namely, a notch in the crack initiation spot, or the crankshaft misalignment.
  • On the determination of J-resistance curve of metallic materials using the unloading compliance technique and normalization method
    Publication . Leite, A.; Balhana, A.; Anes, Vitor; Reis, L.
    In the present work, a study is made about the experimental determination of the fracture resistance curve (R curve) of metallic materials, using the methods: resistance curve and normalization, guided by the ASTM E 1820 standard. The resistance curve method, used here, consists in obtaining the “R curve” (expressed in integral J) through a single specimen. Within this method, the elastic compliance technique was used to obtain crack extension values. The normalization method consists in obtaining the resistance curve (expressed in integral J) directly from the force vs displacement diagram and the initial and final crack lengths, measured at the fracture surface. wo sets of specimens of two metallic materials were tested. Two specimens from each set were submitted to the normalization method, while the remaining were studied with the resistance curve method, implemented in the Instron Wavematrix software, based on the procedure of ASTM E 1820. It was not possible to obtain the value of Fracture Toughness in plain strain, JIC, since ductile crack sizes did not comply with all mandatory items of the standard ASTM E 1820, namely a crack tunnelling effect was observed, being the crack front much deeper than its value near the free surface Within each material, the respective resistance curves were compared using both methods.
  • Evaluation of a phenomenological elastic‐plastic approach for magnesium alloys under multiaxial loading conditions
    Publication . Anes, Vitor; Reis, Luis; Freitas, M. De
    Magnesium alloys are greatly app reciated due to their high strength to weight ratio, stiffness, and low density; however, they can exhibit complex types of cyclic plasticity like twinning, de‐twinning, or Bauschinger effect. Recent studies indicate that these types of cyclic plastic deformations cannot be fully characterized using the typical tools used in cyclic characterization of steels and aluminium alloys; thus, it is required new approaches to fully capture their cyclic deformation and plasticity. This study aims to propose and evaluate a phenomenological cyclic elastic‐plastic approach designed to capture the cyclic deformation of magnesium alloys under multiaxial loading conditions. Series of experimental tests were performed to characterize the cyclic mechanical behaviour of the magnesium alloy AZ31BF considering proportional loadings with different strain amplitude ratios and a nonproportional loading with a 45° phase shift. The experi mental results were modulated using polynomial functions in order to implement a cyclic plasticity model for the AZ311BF based on the phenomenological approach proposed. Results show good correlations between experiments and estimates.
  • Fatigue life of a railway wheel under uniaxial and multiaxial loadings
    Publication . Soares, Henrique; Anes, Vitor; de Freitas, M.; Reis, Luis
    In this paper, a railway wheel material is under evaluation using multiaxial fatigue testing. The experiments were conducted using a servo-hydraulic machine with standardized specimens. All samples were machined from a single worn-out railway wheel. The damage scale between normal and shear stresses was evaluated in the normal stress space for proportional and non-promotional loadings. Moreover, the uniaxial SN curves were obtained. A critical plane analysis was performed using theoretical criteria and experimental results. Results show a strong influence of heat treatments on the material fatigue behavior.
  • Fatigue damage assessment under random and variable amplitude multiaxial loading conditions in structural steels
    Publication . Anes, Vitor; Caxias, J.; Freitas, M.; Reis, L.
    Fatigue damage assessment of multiaxial random loadings is a complex issue and a subject of actual interest in mechanical design. In this work, the performance of the stress scale factor (SSF) criterion is evaluated under variable amplitude loading conditions, and damage accumulation approaches. This evaluation is performed by taking into account two types of loading spectra, namely the loading block spectra (where the loading pattern is well identified and repeated until rupture), and the random loading spectra (where the stochastic behaviour of the axial and shear loading components do not allow a direct identification of the loading pattern). Moreover, the validity of the hypothesis in which the SSF damage map remains valid for any high strength steel under variable amplitude loading conditions is also inspected by analysing fatigue life correlation of the 1050 QT steel and the 304L stainless steel under a multiaxial loading block.
  • Effect of surface treatment on adhesively bonded aluminium-aluminium joints regarding aeronautical structures
    Publication . Correia, Sérgio; Anes, Vitor; Reis, Luis
    The structural integrity of several structures could be determined by their joints strength. Over the years, adhesively bonded joints have been often chosen to achieve a compromise between mass reduction and higher mechanical strength. Among others, the reduction in stress concentrations, the ability of producing smooth surfaces with no discontinuities and the reduced weight penalties are some of the factors that make this type of joints so attractive. Normally, to increase the bond strength, the materials to be bonded must be subjected to a kind of surface treatment. For metals, and more specifically, for aluminium alloys, phosphoric acid anodizing and chromic acid anodizing have been the most used treatments worldwide. However, recent investigations show that these kinds of anodizing are detrimental to health due to the release of carcinogenic substances. With this in mind, it is of the utmost importance to find alternative surface treatments that can ensure an effective bond. In this paper, a vast experimental study was performed based in the single lap joint ASTM D 1002 standard method, with the objective of determining the best alternative surface treatment (Sulfuric Acid Anodizing and Boric-Sulfuric Acid Anodizing), for aluminium-to-aluminium joints, using two types of adhesives, namely the AF 163 and the EA 9658 AERO. Results show that the optimum surface treatment is different for each type of adhesive and this fact has a huge influence on mechanical behavior of this type of aeronautical adhesive joints.
  • A new risk prioritization model for failure mode and effects analysis
    Publication . Anes, Vitor; Henriques, Elsa; de Freitas, M.; Reis, Luis
    Failure modes and effects analysis is a framework that has been widely used to improve reliability by prioritizing failures modes using the so‐called risk priority number. However, the risk priority number has some problems frequently pointed out in literature, namely its non‐injectivity, non‐surjectivity, and the impossibility to give weights to risk variables. Despite these disadvantages, the risk priority number continues to be widely used due to its higher simplicity when compared with other alternatives found in literature. In this paper, we propose a novel risk prioritization model to overcome the major drawbacks of the risk priority number. The model contains 2 functions, the risk isosurface function that prioritizes 3 risk variables considering their order of importance in a given risk scenario, and the risk prioritization index function which prioritizes 3 risk variables considering their weights. The novelty of the proposed model is its injectivity, surjectivity, and ease of use in failure modes prioritization. The performance of the proposed model was analyzed using some examples typically used to discuss the conventional risk priority number shortcomings. The model was applied to a case study and its performance correlated with other risk prioritization models. Results show that the failure modes prioritization reached with the proposed model agrees with the expectations made for the risk scenario.
  • Magnesium alloy elastoplastic behaviour under multiaxial loading conditions
    Publication . Anes, Vitor; Moreira, Rogério; Freitas, Manuel; Reis, Luís
    The reduction of pollution and fuel consumption is an important goal to the transportation industry. The weight reduction of vehicles has a strong effect on the reduction of greenhouse gas emissions and on the fuel consumption. Nowadays magnesium alloys tend to replace steels and aluminium alloys in order to go further in the structural weight reduction. Magnesium alloys are greatly appreciated due to their high strength-to-weight ratio, stiffness, and low density. However, magnesium alloys can exhibit complex types of cyclic plastic deformation, like twinning and de-twinning effect. Recent researches indicate that these type of plastic deformation cannot be fully characterized using the typical tools used in steels, thus it is required a new approach to fully capture their fatigue cyclic deformation and plasticity. This research aims to obtain a phenomenological cyclic elastic-plastic model that captures the cyclic deformation of magnesium alloys under multiaxial loading conditions. In order to validate the achieved model, the numeric estimates were correlated with the experimental data and with the estimates of the Jiang & Sehitoglu plasticity model. The results show that the developed model estimates are in agreement with the experimental data.