Loading...
9 results
Search Results
Now showing 1 - 9 of 9
- Efficient solvent-free friedel-crafts benzoylation and acylation of m-xylene catalyzed by N-acetylpyrazine-2-carbohydrazide-Fe(III)-chloro complexesPublication . Roy Barman, Tannistha; Sutradhar, Manas; Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Kuznetsov, Maxim L.; Pombeiro, ArmandoReaction of N-acetylpyrazine-2-carbohydrazide (H2L) with anhydrous Fe(II) or Fe(III) chloride in CH3CN or in MeOH leads to the mononuclear [Fe(kNN’O-HL)Cl2] (1) or binuclear [Fe(kNN’O-HL) Cl(μ-OMe)]2 (2) Fe(III) complex, respectively. These complexes are characterized by elemental analysis, ESI-MS, IR spectroscopy, single-crystal X-ray crystallography, electrochemical techniques and DFT calculations. The theoretical calculations indicate that the three single-electron sequential reductions of 1 are centred at the metal, at the pyrazine group and at both, respectively. The catalytic activity of 1 and 2 was screened towards Friedel-Crafts benzoylation and acylation of m-xylene. The effects of reaction parameters, such as catalyst amount, reaction time and temperature, were studied and, under optimal conditions, 96% yield of 2,4-dimethylbenzophenone and 20% yield of 2,4-dimethylacetophenone were obtained, respectively. Complex 1 exhibited the highest activity in both reactions. The structural and electrochemical properties were supported by theoretical calculations and the importance of the Lewis acid character of the catalyst in the promotion of this catalytic reaction is discussed.
- Mono-alkylation of cyanoimide at a molybdenum(IV) diphosphinic center by alkyl halides: synthesis, cathodically induced isomerization and theoretical studiesPublication . Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Kuznetsov, Maxim L.; Martins, Luisa; Pombeiro, ArmandoTreatment of trans-[Mo(NCN)(2)(dppe)(2)] with alkyl halides (RX) affords the alkylated cyanoimidocomplexes trans-[Mo(NCN)(NCNR)(dppe)(2)]X [R = Me, X = I (1); R = Et, X = I (2); R = Pr, X = I (3); R = Pr-i, X = I (4); R = CH2Ph, X = Br (5); R = CH2C6H4NO2-4, X = Br (6)], while its reaction with the trimethyloxonium salt [Me3O][BF4] affords trans-[Mo(NCN)(NCNMe)(dppe)(2)][BF4] (7). The reactions are accelerated by microwave irradiation. Complexes 1-7 were fully characterized by elemental analyses, IR and NMR spectroscopies, FAB-MS spectrometry, cyclic voltammetry and controlled potential electrolysis. The electrophilic addition to the exo-N atom of one of the cyanoimide ligands was confirmed by single crystal X-ray crystal analysis of 1. In aprotic medium and at a Pt electrode, compounds 1-7 undergo, apart from two consecutive single-electron reversible oxidations, also two successive single-electron reductions at different potentials, involving a cathodically induced trans-to-cis isomerization, following a double square ECEC-type mechanism which was studied in detail by digital simulation of the cyclic voltammograms. Quantum-chemical calculations indicate that the oxidations and reductions are mainly metal centered (although the latter with some involvement of the cyanoimide moieties), and that the reduction leads to a decrease of the relative stability of the trans isomer vs. the cis one.
- Acylated cyanoimido-complexes trans-[Mo(NCN){NCN(O)R}(DPPE)(2)]Cl and their reactons with electrophiles: Chemical, electrochemical and theoretical studyPublication . Alegria, Elisabete; Silva, Maria de Fátima Costa Guedes da; Kuznetsov, Maxim L.; Cunha, S. M. P. R. M.; Martins, Luisa; Pombeiro, ArmandoTreatment of a dichloromethane solution of trans-[Mo(NCN){NCNC(O)R}(dppe)(2)]Cl [R = Me (1a), Et (1b)] (dppe = Ph2PCH2CH2PPh2) with HBF4, [Et3O][BF4] or EtC(O)Cl gives trans-[Mo(NCN)Cl-(dppe)(2)]X [X = BF4 (2a) or Cl (2b)] and the corresponding acylcyanamides NCN(R')C(O)Et (R' = H, Et or C(O)Et). X-ray diffraction analysis of 2a (X = BF4) reveals a multiple-bond coordination of the cyanoimide ligand. Compounds 1 convert to the bis(cyanoimide) trans-[Mo(NCN)(2)(dppe)(2)] complex upon reaction with an excess of NaOMe (with formation of the respective ester). In an aprotic medium and at a Pt electrode, compounds 1 (R = Me, Et or Ph) undergo a cathodically induced isomerization. Full quantitative kinetic analysis of the voltammetric behaviour is presented and allows the determination of the first-order rate constants and the equilibrium constant of the trans to cis isomerization reaction. The mechanisms of electrophilic addition (protonation) to complexes 1 and the precursor trans[Mo(NCN)(2)(dppe)(2)], as well as the electronic structures, nature of the coordination bonds and electrochemical behaviour of these species are investigated in detail by theoretical methods which indicate that the most probable sites of the proton attack are the oxygen atom of the acyl group and the terminal nitrogen atom, respectively.
- Syntheses, molecular structures, electrochemical behavior, theoretical study, and antitumor activities of organotin(IV) complexes containing 1-(4-chlorophenyl)-1-cyclopentanecarboxylato ligandsPublication . Shang, Xianmei; Meng, Xianggao; Alegria, Elisabete; Li, Qingshan; Guedes Da Silva, M. Fátima C.; Kuznetsov, Maxim L.; Pombeiro, ArmandoThe organotin(IV) compounds [Me2Sn(L)2] (1), [Et2Sn(L)2]( 2), [nBu2Sn(L)2]( 3), [nOct2Sn(L)2]( 4), [Ph2Sn(L)2]( 5), and [PhOSnL]6 (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1 5 are mononuclear diorganotin(IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn6O6 core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60,BGC-823,Bel-7402,and KB human cancer cel llines. Within the mononuclear compounds, the most active ones (3,5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.
- Redox-active cytotoxic diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes: Reduction behaviour and theoretical interpretationPublication . Shang, Xianmei M.; Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Kuznetsov, Maxim L.; Li, Qingshan S.; Pombeiro, ArmandoTwo series of new diorganotin(IV) cycloalkylhydroxamate complexes with different ring sizes (cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl), formulated as the mononuclear [R2Sn(HL)(2)] (1:2) (a, R=Bu-n and Ph) and the polymeric [R2SnL](n) (1:1) (b, R=Bu-n) compounds, were prepared and fully characterized. Single crystal X-ray diffraction for [(Bu2Sn)-Bu-n{C5H9C(O)NHO}(2)] (3a) discloses the cis geometry and strong intermolecular NH center dot center dot center dot O interactions. The in vitro cytotoxic activities of the complexes were evaluated against HL-60, Bel-7402, BGC-823 and KB human tumour cell lines, the greater activity concerning [(Bu2Sn)-Bu-n(HL)(2)] [HL=C3H5C(O)NHO (1a), C6H11C(O)NHO (4a)] towards BGC-823. The complexes undergo, by cyclic voltammetry and controlled-potential electrolysis, one irreversible overall two-electron cathodic process at a reduction potential that does not appear to correlate with the antitumour activity. The electrochemical behaviour of [R2Sn(C5H9C(O)NHO)(2)] [R=Bu-n (3a), Ph (7a)] was also investigated using density functional theory (DFT) methods, showing that the ultimate complex structure and the mechanism of its formation are R dependent: for the aromatic (R = Ph) complex, the initial reduction step is centred on the phenyl ligands and at the metal, being followed by a second reduction with Sn-O and Sn-C ruptures, whereas for the alkyl (R=Bu-n) complex the first reduction step is centred on one of the hydroxamate ligands and is followed by a second reduction with Sn-O bond cleavages and preservation of the alkyl ligands. In both cases, the final complexes are highly coordinative unsaturated Sn-II species with the cis geometry, features that can be of biological significance.
- New RuII(arene) complexes with halogen-substituted bis- and tris(pyrazol-1-YL)borate ligandsPublication . Orbisaglia, Serena; Di Nicola, Corrado; Marchetti, Fabio; Pettinari, Riccardo; Martins, Luisa; Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Rocha, Bruno G. M.; Kuznetsov, Maxim L.; Pombeiro, Armando; Skelton, Brian; Sobolev, Alexandre; White, Allan H.[RuCl(arene)(-Cl)](2) dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis- and tris(pyrazolyl)borate ligands [Na(BpBr3)], [Tl(TpBr3)], and [Tl(Tp(iPr,4Br))]. Mononuclear neutral complexes [RuCl(arene)((2)-BpBr3)] (1: arene=p-cymene (cym); 2: arene=hexamethylbenzene (hmb); 3: arene=benzene (bz)), [RuCl(arene)((2)-TpBr3)] (4: arene=cym; 6: arene=bz), and [RuCl(arene)((2)-Tp(iPr,4Br))] (7: arene=cym, 8: arene=hmb, 9: arene=bz) have been always obtained with the exception of the ionic [Ru-2(hmb)(2)(-Cl)(3)][TpBr3] (5), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru(CH3OH)(cym)((2)-BpBr3)][X] (10: X=PF6, 12: X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)((2)-BpBr3)] (11) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1-12 have been characterized by analytical and spectroscopic data (IR, ESI-MS, H-1 and (CNMR)-C-13 spectroscopy). The structures of the thallium and calcium derivatives of ligand TpBr3, [Tl(TpBr3)] and [Ca(dmso)(6)][TpBr3](2)2DMSO, of the complexes 1, 4, 5, 6, 11, and of the decomposition product [RuCl(cym)(Hpz(iPr,4Br))(2)][Cl] (7) have been confirmed by using single-crystal X-ray diffraction. Electrochemical studies showed that 1-9 and 11 undergo a single-electron (RuRuIII)-Ru-II oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron-donor characters of the bis- and tris(pyrazol-1-yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever E-L ligand parameter for BpBr3, TpBr3, and Tp(iPr,4Br). Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal-centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the (3)-binuclear complex 5 (instead of the mononuclear 5) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.
- Syntheses, molecular structures, electrochemical behavior, theoretical study, and antitumor activities of organotin(IV) complexes containing 1-(4-chlorophenyl)-1-cyclopentanecarboxylato ligandsPublication . Shang, Xianmei; Meng, Xianggao; Alegria, Elisabete; Li, Qingshan; Guedes Da Silva, M. Fátima C.; Kuznetsov, Maxim L.; Pombeiro, ArmandoThe organotin(IV) compounds [Me2Sn(L)(2)] (1), [Et(2)sn(L)(2)] (2), [(Bu2Sn)-Bu-n(L)(2)] (3), [(n)Oct(2)Sn(L)(2)] (4), [Ph2Sn(L)(2)] (5), and [PhOSnL](6) (6) have been synthesized from the reactions of 1-(4-chlorophenyl)-1-cyclopentanecarboxylic acid (HL) with the corresponding diorganotin(IV) oxide or dichloride. They were characterized by IR and multinuclear NMR spectroscopies, elemental analysis, cyclic voltammetry, and, for 2, 3, 4 and 6, single crystal X-ray diffraction analysis. While 1-5 are mononuclear diorganotin (IV) compounds, the X-ray diffraction of 6 discloses a hexameric drumlike structure with a prismatic Sn6O6 core. All these complexes undergo irreversible reductions and were screened for their in vitro antitumor activities toward HL-60, BGC-823, Bel-7402, and KB human cancer cell lines. Within the mononuclear compounds, the most active ones (3, 5) are easiest to reduce (least cathodic reduction potentials), while the least active ones (1, 4) are the most difficult to reduce. Structural rearrangements (i.e., Sn-O bond cleavages and trans-to-cis isomerization) induced by reduction, which eventually can favor the bioactivity, are disclosed by theoretical/electrochemical studies.
- Oxorhenium complexes bearing the water-soluble tris(pyrazol-1-yl)methanesulfonate, 1,3,5-triaza-7-phosphaadamantane, or related ligands, as catalysts for baeyer-villiger oxidation of ketonesPublication . Martins, Luisa; Alegria, Elisabete; Smolenski, Piotr; Kuznetsov, Maxim L.; Pombeiro, ArmandoNew rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
- Efficient solvent-free friedel-crafts benzoylation and acylation of m-Xylene catalyzed by N-Acetylpyrazine-2-carbohydrazide-Fe(III)-chloro complexesPublication . Roy Barman, Tannistha; Sutradhar, Manas; Alegria, Elisabete; Guedes Da Silva, M. Fátima C.; Kuznetsov, Maxim L.; Pombeiro, ArmandoReaction of N-acetylpyrazine-2-carbohydrazide (H2L) with anhydrous Fe(II) or Fe(III) chloride in CH3CN or in MeOH leads to the mononuclear [Fe(kappa NN'O-HL)Cl-2] (1) or binuclear [Fe(kNN'O-HL) Cl(mu-OMe)](2) (2) Fe(III) complex, respectively. These complexes are characterized by elemental analysis, ESI-MS, IR spectroscopy, single-crystal X-ray crystallography, electrochemical techniques and DFT calculations. The theoretical calculations indicate that the three single-electron sequential reductions of 1 are centred at the metal, at the pyrazine group and at both, respectively. The catalytic activity of 1 and 2 was screened towards Friedel-Crafts benzoylation and acylation of m-xylene. The effects of reaction parameters, such as catalyst amount, reaction time and temperature, were studied and, under optimal conditions, 96% yield of 2,4-dimethylbenzophenone and 20% yield of 2,4-dimethylacetophenone were obtained, respectively. Complex 1 exhibited the highest activity in both reactions. The structural and electrochemical properties were supported by theoretical calculations and the importance of the Lewis acid character of the catalyst in the promotion of this catalytic reaction is discussed.