Loading...
50 results
Search Results
Now showing 1 - 10 of 50
- Detection of azo dyes using carbon dots from olive mill wastesPublication . Sousa, Diogo A.; Berberan-Santos, Mario; Prata, José VirgílioAzo dyes are widely spread in our day life, being heavily used in cosmetics, healthcare products, textile industries, and as artificial food colorants. This intense industrial activity, which inherently includes their own production, inexorably leads to uncontrolled release of dyes into the environment. As emerging pollutants, their detection, particularly in water systems, is a priority. Herein, a fluorescence-based method was employed for the sensitive and selective detection of anionic and neutral azo dyes. Carbon dots (CDs) synthesized from wet pomace (WP), an abundant semi-solid waste of olive mills, were used as probes. An outstanding capability for detection of azo dyes methyl orange (MO) and methyl red (MR) in aqueous solutions was disclosed, which reached a limit of detection (LOD) of 151 ppb for MO. The selectivity of WP-CDs for the anionic azo dye (MO) was established through competitive experiments with other dyes, either anionic (indigo carmine) or cationic (fuchsin, methylene blue, and rhodamine 6G); perchlorate salts of transition metal cations (Cu(II), Co(II), Fe(II), Fe(III), Hg(II), and Pb(II)); and sodium salts of common anions (NO3-, CO32-, Cl-, and SO42-). Evidence has been collected that supports static quenching as the main transduction event underlying the observed quenching of the probe's fluorescence, combined with a dynamic resonance energy transfer (RET) mechanism at high MO concentrations.
- Carbon dots from coffee grounds by a one-pot microwave-assisted methodPublication . Moraes, Bianca; Costa, Alexandra I.; Barata, Patrícia; Prata, José V.Carbon-based nanomaterials, particularly carbon dots (C-dots) have attracted the researchers interest due their excellent luminescence, photostability and biocompatibility, encouraging their use in several areas such as biomedicine, (bio)sensors, photocatalysis and optoelectronics. C-dots could be prepared by a variety of methods (top-down and bottom-up approaches), using a great diversity of carbon sources. Bottom-up processes based on the use of waste materials for producing C-dots are particularly attractive since an effective reduction of environmental impacts of those wastes may be foreseen, while high-valued nanomaterials can be simultaneously obtained. Coffee is one of the most consumed brews all over the world, generating large amounts of coffee waste, a source of a serious environmental problem due to the high content of organic matter such as caffeine, phenols, tannins, and sugars. Herein, we explore the valorization of coffee grounds generated from automatic and vending machines for production of C-dots through a one-pot monomode microwave-assisted method. Structural and photophysical characterization of the as-synthesized nanomaterials have been carried out, and their potential applications as sensing materials for pollutants and explosives (e.g. nitroanilines and nitroaromatics) were evaluated by fluorescence and absorption techniques.
- Carbon nanodots from olive mill wastewater: a sustainable routePublication . Sousa, D. A.; Costa, Alexandra; Alexandre, M. R.; Prata, José VirgílioOlive oils are obtained from the fruit of the olive tree (Olea europaea L.) by combined mechanical and physical operations. Portugal has a significant production of olive oil (76 k tonnes/year over the last 5 years, 2010-2015) [1]. Olive oil is typically obtained by two main processes: batch press and continuous centrifugation. Depending on the particular process used, 200-1600 L of olive mill wastewater (OMWW) is produced per tonne of processed olives. Taken the lowest of these values, an estimate points to around 15 million L of OMWW may be produced each year in Portugal. The OMWW exhibits very low biodegradability parameters which pose serious issues for its treatment. Sustainable production of high-valued carbon materials from industrial lowvalued and problematic wastes is particularly appealing and highly desirable.
- Polímeros fluorescentes para a detecção de metais tóxicosPublication . Fialho, Carina B.; Barata, Patrícia; Prata, José V.; Costa, Alexandra I.As reconhecidas capacidades dos calixarenos como receptores moleculares sintéticos, capazes de interagir e formar, selectivamente, complexos com espécies moleculares e iónicas, suscitaram o nosso interesse na sua incorporação em sistemas poliméricos conjugados, perspectivando a ocorrência da amplificação do sinal de transdução em processos de detecção de explosivos [1] e biomoléculas [2]. Na presente comunicação será apresentada a síntese, caracterização e aplicação sensorial a metais tóxicos de polímeros baseados em unidades de calix[4]arenos ditópicos e dietinil-9-propil-9H-carbazoles (CALIX-OCF-PPE-2,7-CBZeCALIX-OCF-PPE-3,6-CBZ).
- A solid-state fluorescence sensor for nitroaromatics and nitroanilines based on a conjugated Calix[4]arene polymerPublication . Prata, José V.; Costa, Alexandra I.; Teixeira, CarlosA new conjugated polymer possessing calix[4]arene-oxacyclophane units wired-in-series by phenyleneethynylene linkers was synthesized by a Sonogashira-Hagihara cross-coupling method in high yield. The polymer was structurally characterized by FTIR and 1H/13C/HSQC NMR techniques, and its average Mn (38.5 kDa) retrieved from GPC analysis. The polymer is highly emissive (ΦF =0.55) and exhibits a longer-than-usual excited-state lifetime (1.80 ns) for a phenyleneethynylene type polymer. Similar photo physical properties (absorption and fluorescence emission) were observed in solution and insolid-state. This stems from the presence of bulky calixarene moieties along the polymer chains which prevent interchain staking and the formation of ground-state aggregates and/or non-emissive exciplexes, both deleterious to solid-state materials envisioned for fluorescence sensing applications. Moreover, the intrinsic molecular recognition capabilities of its two rigid inner cavities (calixarene and cyclophane sub-units), allied with the high three-dimensionality of the macromolecule that creates additional interstitial voids around the molecular receptors, can boost its sensory responses towards specific analytes. A high sensitive response was observed in the detection of nitroaromatics and nitroanilines in neat vapour phases by casted films of the polymer. The largest sensitivitieswereobtainedfor2,4-dinitrotoluene (a taggant for the explosive TNT;>85% of fluorescence quenching upon 1 min exposure) and ortho-nitroaniline (90% of emission reduction in 30s).The sensory responses attained in solid-state are discussed on the basis of the electron affinities of the analytes and their electrostatic interactions with polymer films.
- Metal ion recognition induced by calix[4]arene carbazole containing polymersPublication . D. Barata, Patrícia; Costa, Alexandra; Fialho, Carina B.; Prata, José VirgílioSensing and recognition of ions and neutral molecules via synthetic receptors are of current interest in supramolecular chemistry because of their significant importance in several areas, such as chemistry, biology and environment. Compared with small molecules, polymers-based sensors displayed several importante advantages like signal amplification. In this way, the incorporation of molecular receptors such as calixarenes with conjugated polymer backbones is expected to enhance the signaling events related to a host–guest interaction. The preorganized binding sites, easy derivatization and flexible three-dimensional steric structures make calixarenes ideal construction platforms for molecular design to generate fluorescente receptors. The use of calixarenes as supramolecular scaffolds for this type of architectures has been explored and the sensing abilities of resultant polymers toward metal and molecular ions established. Based on the high sensitivity shown by the non-polymeric analogue CALIX-OCP-CBZ (notshown), to toxic metal cations, we decide two extend the sensing study to polymer materials. Herein, we report the preliminar results of the chemosensing ability of a new bicyclic calix[4]arene-carbazole-polymer (CALIX-OCP-PPE-CBZ) towards the detection of toxic metals in fluid phase.
- Linear and crosslinked copolymers of p-tert-butylcalix[4]arene derivatives and styrene: new synthetic approaches to polymer-bound calix[4]arenesPublication . Mendes, Ana R.; Gregório, Carla C.; Barata, Patrícia; Costa, Alexandra I.; Prata, José V.As an extension of our previous studies concerning the free radical copolymerisation of 25,26,27-tripropoxy-28-(4-vinyl-benzyloxy)-p-tert-butylcalix[4]arene (3) with styrylic monomers, we report herein on the synthesis and characterisation of new terpolymers derived from 3, styrene and divinylbenzene, having nominal crosslinking degrees ranging from 4% to 40% wt. The terpolymers exhibited good thermal stabilities (DSC) and were prepared in good yields. Depending on the reaction conditions (dilution degree and aqueous phase to porogen ratio), materials with identical nominal crosslinking but otherwise differentiated morphologies and swelling abilities were obtained. In a related study, the radical polymerisation of styrene was carried out in the presence of a novel calix[4]arene derivative 4, bearing two distal benzyl–vinyl groups in the lower rim. It is shown that, albeit the presence of two phenolic groups within the calixarene moiety which could have functioned as inhibitors of the free radical polymerisation, the macrocycle was able to take part in the copolymerisation reaction, yielding new soluble and crosslinked polymers. In both cases, no pendant vinyl groups were found in the polymeric materials. The probable mechanisms underlying their formation are discussed.
- Solid-state sensory properties of Calix-Poly(Phenylene Ethynylene)s toward nitroaromatic explosivesPublication . Costa, Alexandra; Pinto, Hugo D.; Ferreira, Luís F. V.; Prata, José VirgílioThis study is primarily focused in establishing the solid-state sensory abilities of several luminescent polymeric calix[4]arene-based materials toward selected nitroaromatic compounds (NACs), creating the foundations for their future application as high performance materials for detection of high explosives. The phenylene ethynylene-type polymers possessing bis-calix[4]arene scaffolds in their core were designed to take advantage of the known recognition abilities of calixarene compounds toward neutral guests, particularly in solid-state, therefore providing enhanced sensitivity and selectivity in the sensing of a given analyte. It was found that all the calix[4]arene-poly(para-phenylene ethynylene)s here reported displayed high sensitivities toward the detection of nitrobenzene, 2,4-dinitrotoluene and 2,4,6-trinitrotoluene (TNT). Particularly effective and significant was the response of the films (25-60 nm of thickness) upon exposure to TNT vapor (10 ppb): over 50% of fluorescence quenching was achieved in only 10 s. In contrast, a model polymer lacking the calixarene units showed only reduced quenching activity for the same set of analytes, clearly highlighting the relevance of the macrocyclics in promoting the signaling of the transduction event. The films exhibited high photostability (less than 0.5% loss of fluorescence intensity up to 15 min of continuous irradiation) and the fluorescence quenching sensitivity could be fully recovered after exposure of the quenched films to saturated vapors of hydrazine (the initial fluorescence intensities were usually recovered within 2-5 min of exposure to hydrazine).
- Finding value in wastewaters from the cork industry: carbon dots synthesis and fluorescence for hemeprotein detectionPublication . Alexandre, Marta R.; Costa, Alexandra I.; Berberan-Santos, Mario; Prata, José V.Valorisation of industrial low-value waste residues was preconized. Hence, carbon dots (C-dots) were synthesized from wastewaters of the cork industry—an abundant and a_ordable, but environmentally-problematic industrial e_uent. The carbon nanomaterials were structurally and morphologically characterised, and their photophysical properties were analysed by an ensemble of spectroscopy techniques. Afterwards, they were successfully applied as highly-sensitive fluorescence probes for the direct detection of haemproteins. Haemoglobin, cytochrome c and myoglobin were selected as specific targets owing to their relevant roles in living organisms, wherein their deficiencies or surpluses are associated with several medical conditions. For all of them, remarkable responses were achieved, allowing their detection at nanomolar levels. Steady-state and time-resolved fluorescence, ground-state UV–Vis absorption and electronic circular dichroism techniques were used to investigate the probable mechanisms behind the fluorescence turn-o_ of C-dots. Extensive experimental evidence points to a static quenching mechanism. Likewise, resonance energy transfer and collisional quenching have been discarded as excited-state deactivating mechanisms. It was additionally found that na oxidative, photoinduced electron transfer occurs for cytochrome c, the most electron-deficient protein Besides, C-dots prepared from citric acid/ethylenediamine were comparatively assayed for protein detection and the di_erences between the two types of nanomaterials highlighted.
- Fostering protein-calixarene interactions: from molecular recognition to sensingPublication . Prata, José Virgílio; D. Barata, PatríciaTwo isomeric bis-calixarene-carbazole conjugates (CCC-1 and CCC-2) endowed with carboxylic acid functions at their lower rims have been found to display a high sensing ability (KSV up to 6 x 10(7) M-1) and selectivity toward cytochrome c, a multi-functional protein, in an aqueous-based medium. After targeting basic amino acid residues on the protein surface residing near the prosthetic heme group through electrostatic and hydrophobic interactions, a rapid photoinduced electron transfer ensues between the integrated transduction element (aryleneethynylene chromophore) of CCCs and the iron-oxidized heme of cytochrome c, enabling direct detection of the protein at nanomolar levels. Our results show that CCCs are capable of efficiently discriminating heme proteins (cytochrome c vs. myoglobin) and non-heme proteins (lysozyme) in an aqueous medium. Studies performed in two solvent systems (organic and aqueous) strongly suggest that in an organic medium a Forster-type resonance energy transfer is responsible for the observed reduction in CCCs emission upon contact with heme proteins while in an aqueous medium a specific photoinduced electron transfer mechanism prevails.