Browsing by Author "Martins, Paulo A. F."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Influence of corrosion on the electrical and mechanical performance of hybrid busbarsPublication . Sampaio, Rui F. V.; Bragança, Ivo; Pragana, J. P. M; Silva, C. M. A.; Fernandes, João C. S.; Martins, Paulo A. F.This paper is focused on the electrical and mechanical performance of aluminum-copper hybrid busbars subjected to corrosion over time. Two different types of hybrid busbars with joints produced by conventional fastening with M8 hexagonal socket head bolt-nut pairs made from medium carbon steel and by a new injection lap riveting process with semi-tubular rivets made from the material of the softer conductor are used and subjected to salt spray and electrochemical tests. Electrical resistance measurements performed on hybrid busbars taken from the corrosion testing cabinet at the end of each exposure period allow concluding that the new injection lap riveted hybrid busbars have a better electrical performance over time due to the elimination of fasteners with a higher electrical resistivity than aluminum and copper and to the elimination of the aluminum-steel and copper-steel galvanic pairs. The capability of the injection lap riveted hybrid busbars to withstand shear forces after corrosion testing also revealed to be adequate and like those of the original (uncorroded) hybrid busbars.
- Resistance element welding of sandwich laminates with hidden insertsPublication . Calado, Francisco N.; Pragana, João; Bragança, Ivo; Silva, Carlos M. A.; Martins, Paulo A. F.This paper presents a new resistance element welding process capable of producing invisible lap joints between steel-polymer-steel composite laminates. The process involves pre-drilling a flat-bottom hole in each laminate to remove the polymer core and one of the steel sheets, and positioning a cylindrical insert inside the two adjoining holes for subsequent resistance welding. Finite element modeling is utilized to construct the weldability lobe and to identify the parameters that lead to the formation of acceptable joints. Experimental results confirm the applicability of the process to produce invisible lap joints without signs of material protrusions or local indentations resulting from squeezing the polymer out to create contact between the steel sheets. Destructive peel and shear tests allow determining the maximum forces that the joints can safely withstand and comparing their performance against alternative joined by forming lap joints in which the mechanical interlocking is also hidden inside the laminates.
- Resistance element welding of sandwich laminates with hidden insertsPublication . Calado, Francisco N.; Pragana, João; Bragança, Ivo; Silva, Carlos; Martins, Paulo A. F.This paper presents a new resistance element welding process capable of producing invisible lap joints between steel-polymer-steel composite laminates. The process involves pre-drilling a flat-bottom hole in each laminate to remove the polymer core and one of the steel sheets, and positioning a cylindrical insert inside the two adjoining holes for subsequent resistance welding. Finite element modeling is utilized to construct the weldability lobe and to identify the parameters that lead to the formation of acceptable joints. Experimental results confirm the applicability of the process to produce invisible lap joints without signs of material protrusions or local indentations resulting from squeezing the polymer out to create contact between the steel sheets. Destructive peel and shear tests allow determining the maximum forces that the joints can safely withstand and comparing their performance against alternative joined by forming lap joints in which the mechanical interlocking is also hidden inside the laminates.