Browsing by Author "Louro, Paula"
Now showing 1 - 10 of 128
Results Per Page
Sort Options
- a-SiCH based devices as optical demultiplexersPublication . Louro, Paula; Vieira, Manuela; Costa, João; Vieira, Manuel; Fernandes, Miguel; Fantoni, Alessandro; Barata, ManuelIn this paper we present results on the use of a multilayered a-SiC:H heterostructure as a wavelength-division demultiplexing device (WDM) for the visible light spectrum. The WDM device is a glass/ITO/a-SiC:H (p-i-n)/ a-SiC:H(-p) /Si:H(-i)/SiC:H (-n)/ITO heterostructure in which the generated photocurrent at different values of the applied bias can be assigned to the different optical signals. The device was characterized through spectral response measurements, under different electrical bias. Demonstration of the device functionality for WDM applications was done with three different input channels covering wavelengths within the visible range. The recovery of the input channels is explained using the photocurrent spectral dependence on the applied voltage. The influence of the optical power density was also analysed. An electrical model, supported by a numerical simulation explains the device operation. Short range optical communications constitute the major application field, however other applications are also foreseen.
- Add/drop filters based on SiC technology for optical interconnectsPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Silva, VítorIn this paper we demonstrate an add/drop filter based on SiC technology. Tailoring of the channel bandwidth and wavelength is experimentally demonstrated. The concept is extended to implement a 1 by 4 wavelength division multiplexer with channel separation in the visible range. The device consists of a p-i'(a-SiC:H)-n/p-i(a-Si: H)-n heterostructure. Several monochromatic pulsed lights, separately or in a polychromatic mixture illuminated the device. Independent tuning of each channel is performed by steady state violet bias superimposed either from the front and back sides. Results show that, front background enhances the light-to-dark sensitivity of the long and medium wavelength channels and quench strongly the others. Back violet background has the opposite behaviour. This nonlinearity provides the possibility for selective removal or addition of wavelengths. An optoelectronic model is presented and explains the light filtering properties of the add/drop filter, under different optical bias conditions.
- Amorphous silicon photovoltaic modules on flexible plastic substratesPublication . Vygranenko, Yuri; Fernandes, Miguel; Louro, Paula; Vieira, Manuela; Khosropour, Alireza; Yang, Ruifeng; Sazonov, AndreiThis paper reports on a monolithic 10 cm x 10 cm area PV module integrating an array of 72 a-Si:H n-i-p cells on a 100 mu m thick polyethylene-naphtalate substrate. The n-i-p stack is deposited using a PECVD system at 150 degrees C substrate temperature. The design optimization and device performance analysis are performed using a two-dimensional distributed circuit model of the photovoltaic cell. The circuit simulator SPICE is used to calculate current and potential distributions in a network of sub-cell circuits, and also to map Joule losses in the front TCO electrode and the metal grid. Experimental results show that the shunt leakage is one of the factors reducing the device performance. Current-voltage characteristics of individual a-Si: H p-i-n cells were analyzed to estimate a variation of shunt resistances. Using the LBIC technique, the presence of multiple shunts in the n-i-p cell was detected. To understand the nature of electrical shunts, the change in the surface roughness of all device layers was analyzed throughout fabrication process. It is found that surface defects in plastic foils, which are thermally induced during the device fabrication, form microscopic pinholes filled with highly conductive top electrode material.
- An optical processor for data error detection and correction using a (9,5) binary code generator and the syndrome decoding processPublication . Vieira, Manuel; Vieira, Manuela; Louro, Paula; Silva, Vítor; Costa, JBased on a-SiC:H technology, we present an optical processor for data error detection and correction using a suitable (9,5) Hamming binary code generator and the syndrome decoding process. The optical processor consists of an a-SiC:H double p-i-n photodetector with two ultraviolet light biased gates. The relationship between the optical inputs (transmitted data) and the corresponding output levels (the received data) is established and decoded. Results show that under irradiation the device acts as an active filter. Under front irradiation the magnitude of the short wavelength is quenched and in the long wavelength range is enlarged, while the opposite happens under back lighting. Parity bits are generated and stored simultaneously with the data word. Parity logic operations are performed and checked for errors together. An all-optical processor for error detection and correction is presented to provide an experimental demonstration of this fault tolerant reversible system. Two original coloured string messages, having 4- and 5- bits, respectively, are analyzed and the transmitted 7- or 9- bit string, the parity matrix, the encoding and decoding processes, are explained. The design of SiC syndrome generators for error correction is tested.
- Analysis of metallic nanoparticles embedded in thin film semiconductors for optoelectronic applicationsPublication . Fantoni, Alessandro; Fernandes, Miguel; Vygranenko, Yuri; Louro, Paula; Vieira, Manuela; Silva, R. P. O.; Teixeira, D.; Da Costa Ribeiro, Ana Paula; Prazeres, Duarte; Alegria, ElisabeteThis paper reports about a study of the local plasmonic resonance (LSPR) produced by metal nanoparticles embedded in a dielectric or semiconductor matrix. It is presented an analysis of the LSPR for different nanoparticle metals, shapes, and embedding media composition. Metals of interest for nanoparticle composition are Aluminum and Gold. Shapes of interest are nanospheres and nanotriangles. We study in this work the optical properties of metal nanoparticles diluted in water or embedded in amorphous silicon, ITO and ZnO as a function of size, aspect-ratio and metal type. Following the analysis based on the exact solution of the Mie theory and DDSCAT numerical simulations, it is presented a comparison with experimental measurements realized with arrays of metal nanospheres. Simulations are also compared with the LSPR produced by gold nanotriangles (Au NTs) that were chemically produced and characterized by microscope and optical measurements.
- Bi-directional communication between infrastructures and vehicles through visible lightPublication . Vieira, Manuel; Vieira, Manuela; Louro, Paula; Vieira, PedroIn this paper a vehicular communication system that incorporates illumination, signaling, communications, and positioning functions is presented. The bidirectional communication between the infrastructures and the vehicles (I2V), between vehicles (V2V) and from the vehicles to the infrastructures (V2I) is performed through Visible Light Communication (VLC) using the street lamps and the traffic signaling LEDs to broadcast the information. As receivers and decoders, pin/pin SiC Wavelength Division Multiplex (WDM) photodetectors, with light filtering properties, are being used. White polychromatic-LEDs are used for lighting and to implement the WDM. This allows modulating separate data streams on four colors which together multiplex to white light. A traffic scenario is proposed, along with the transmitter to receiver setup. The performance of a cooperative driving system is evaluated. To achieve cooperative vehicular communications (I2V2V2I2V), streams of messages containing the ID physical address of the emitters are used, transmitting a codeword that is received and decoded by the receivers. As a proof of concept, a I2V2V2IV traffic scenario is presented, bidirectional communication between the infrastructures and the vehicles is established and tested. The experimental results confirm that the cooperative vehicular VLC architecture is a promising approach concerning communications between road infrastructures and cars, fulfilling data privacy.
- Bi-directional VLC LED-assisted navigation system for large indoor environmentsPublication . Vieira, Manuela; Vieira, Manuel; Louro, Paula; Fantoni, Alessandro; Vieira, PedroIn this paper, a LED-assisted positioning and navigation VLC system is proposed. A VLC scenario for large environments is stablished, the emitters and receivers are characterized and the communication protocol presented. Different layouts are analyzed. Square and hexagonal meshes are tested and a 2D localization design, demonstrated by a prototype implementation, is presented. The key differences between both topologies are discussed. For both, the transmitted information, indoor position, motion direction as well as bi-directional communication are determined. The results showed that the LED-aided VLC navigation system make possible to determine the position of a mobile target inside the network, to infer the travel direction along the time and to interact with information received.
- Bias-dependent photocurrent collection in p-i-n a-Si : H/SiC : H heterojunctionPublication . Louro, Paula; Vieira, Manuela; Vygranenko, Yuri; Fernandes, Miguel; Schwarz, R.; Schubert, M.A series of large area single layers and glass/ZnO:AVp(SixC1-x:H)/i(Si:H)/n(SixC1-x:H)/AI (0 < x < 1) heterojunction cells were produced by plasma-enhanced chemical vapour deposition (PE-CVD) at low temperature. Junction properties, carrier transport and photogeneration are investigated from dark and illuminated current-voltage (J-V) and capacitance-voltage (C-V) characteristics. For the heterojunction cells atypical J-V characteristics under different illumination conditions are observed leading to poor fill factors. High series resistances around 106 Q are also measured. These experimental results were used as a basis for the numerical simulation of the energy band diagram, and the electrical field distribution of the structures. Further comparison with the sensor performance gave satisfactory agreement. Results show that the conduction band offset is the most limiting parameter for the optimal collection of the photogenerated carriers. As the optical gap increases and the conductivity of the doped layers decreases, the transport mechanism changes from a drift to a diffusion-limited process.
- Bidirectional data transfer in VLC linksPublication . Louro, Paula; Vieira, Manuela; Vieira, Manuel AugustoVisible Light communication is a data transmission technology that uses the LED lighting infrastructure to simultaneously illuminate and communicate. The ubiquitous existence of LED lamps opened a new opportunity for addressing VLC communication in many indoor communication scenarios. The motivation for the application presented in this paper is the modern, efficient management of warehouses supported by autonomous navigation robots that grab goods and deliver the items at the packaging station. This functionality demands bi-directional communication among infrastructures and vehicles. In this paper we propose links for Infrastructure-To-Vehicle (I2V), Vehicle-ToInfrastructure (V2I) and Vehicle-To-Vehicle (V2V) to perform indoors, bi-directional communication for robot navigation in automated warehouses. In this work it is proposed a bidirectional communication system between a static infrastructure and a mobile robot (I2V). The LED lamps of the warehouse illumination system are used to lighten the space, and to transmit information about position and about racks content. The mobile robots communicate with the infrastructure (V2I) to transmit information on the items that are being removed and carried to the packaging station. The communication among the autonomous robots (V2V) provides information on the number of items intended to be collected when the vehicles are in the same lane, possibly with the purpose of collecting the same items. Different codification schemes are proposed to establish the V2I, I2V and V2V links. Tri-chromatic white LEDs with the red and blue chips modulated at different frequencies and a photodetector based on a-SiC:H/a-Si:H with selective spectral sensitivity are used at the emitter and receiver. Position information is provided by each LED lamp to the autonomous vehicle by adequate modulation of the RGB emitters. The decoding strategy is based on accurate calibration of the output signal. Different scenarios were designed and tested. Requirements related to synchronous transmission and flickering were addressed to enhance the system performance.
- Bidirectional visible light communicationPublication . Louro, Paula; Vieira, Manuela; Vieira, Manuel AugustoVisible light communication (VLC) is a data transmission technology that uses the LED lighting infrastructure to simultaneously illuminate and communicate. The ubiquitous existence of LED lamps opened a new opportunity for addressing VLC in many indoor communication scenarios. The motivation for the presented application is the efficient management of warehouses supported by autonomous navigation robots that grab goods and deliver them at the packaging station. This functionality demands bidirectional communication between infrastructures and vehicles. We propose links for infrastructure-to-vehicle (I2V), vehicle-to-infrastructure (V2I), and vehicle-to-vehicle (V2V) to perform indoors, bidirectional communication. A bidirectional communication system between a static infrastructure and a mobile robot (I2V) is proposed. The LED lamps of the warehouse illumination system are used to lighten the space and to transmit information on position and racks’ contents. The mobile robots communicate with the infrastructure (V2I) to transmit information on the items that are being removed and carried to the packaging station. The communication among robots (V2V) provides information on the number of items intended to be collected when the vehicles are in the same lane. The proposed coding schemes are used as modulation for the ON-OFF keying method. Trichromatic white LEDs and a photodetector based on a-SiC:H/a-Si:H with selective spectral sensitivity are used at the emitter and receiver. Position information is provided by each LED lamp to the vehicle by adequate modulation of the RGB emitters. The decoding strategy is based on accurate calibration of the output signal. Different scenarios were designed and tested. Requirements related to synchronous transmission and flickering were addressed to enhance the system performance. The decoding task is discussed using a bit parity error control methodology to ensure simultaneous detection and correction of bit errors. The consequent increase of bit error rate in the VLC transmission is discussed in the I2V link.