Browsing by Author "Fournier-Prunaret, D."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Allee's dynamics and bifurcation structures in von Bertalanffy's population size functionsPublication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy's population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee's functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee's effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee's limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee's dynamics. Moreover, the "foliated" structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.
- Allee's dynamics and bifurcation structures in von Bertalanffy's population size functionsPublication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy's population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee's functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee's effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee's limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee's dynamics. Moreover, the "foliated" structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.
- Big Bang Bifurcation Analysis and Allee Effect in Generic Growth FunctionsPublication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.The main purpose of this work is to study the dynamics and bifurcation properties of generic growth functions, which are defined by the population size functions of the generic growth equation. This family of unimodal maps naturally incorporates a principal focus of ecological and biological research: the Allee effect. The analysis of this kind of extinction phenomenon allows to identify a class of Allee’s functions and characterize the corresponding Allee’s effect region and Allee’s bifurcation curve. The bifurcation analysis is founded on the performance of fold and flip bifurcations. The dynamical behavior is rich with abundant complex bifurcation structures, the big bang bifurcations of the so-called “box-within-a-box” fractal type being the most outstanding. Moreover, these bifurcation cascades converge to different big bang bifurcation curves with distinct kinds of boxes, where for the corresponding parameter values several attractors are associated. To the best of our knowledge, these results represent an original contribution to clarify the big bang bifurcation analysis of continuous 1D maps.
- Dynamical analysis and Big Bang bifurcations of 1D and 2D Gompertz’s growth functionsPublication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.In this paper, we study the dynamics and bifurcation properties of a three-parameter family of 1D Gompertz’s growth functions, which are defined by the population size functions of the Gompertz logistic growth equation. The dynamical behavior is complex leading to a diversified bifurcation structure, leading to the big bang bifurcations of the so-called “box-within-a-box” fractal type. We provide and discuss sufficient conditions for the existence of these bifurcation cascades for 1D Gompertz’s growth functions. Moreover, this work concerns the description of some bifurcation properties of a Hénon’s map type embedding: a “continuous” embedding of 1D Gompertz’s growth functions into a 2D diffeomorphism. More particularly, properties that characterize the big bang bifurcations are considered in relation with this coupling of two population size functions, varying the embedding parameter. The existence of communication areas of crossroad area type or swallowtails are identified for this 2D diffeomorphism.
- Dynamics and bifurcations of a map of homographic Ricker typePublication . Rocha, J. Leonel; TAHA, Abdel-Kaddous; Fournier-Prunaret, D.A dynamical system of the type homographic Ricker map is considered; this is a particular case of a new extended gamma-Ricker population model with a Holling type II per-capita birth function. The purpose of this paper is to investigate the nonlinear dynamics and bifurcation structure of the proposed model. The existence, nature and stability of the fixed points of the homographic Ricker map are analyzed, by using a Lambert W function. Fold and flip bifurcation structures of the homographic Ricker map are investigated, in which there are flip codimension-2 bifurcation points and cusp points, while some parameters evolve. Some communication areas and big bang bifurcation curves are also detected. Numerical studies are included.
- Homoclinic and big bang bifurcations of an embedding of 1D Allee's functions into a 2D diffeomorphismPublication . Rocha, J. Leonel; Taha, Abdel-Kaddous; Fournier-Prunaret, D.In this work a thorough study is presented of the bifurcation structure of an embedding of one-dimensional Allee's functions into a two-dimensional diffeomorphism. A complete classification of the nature and stability of the fixed points, on the contour lines of the two-dimensional diffeomorphism, is provided. A necessary and sufficient condition so that the Allee fixed point is a snapback repeller is established. Sufficient conditions for the occurrence of homoclinic tangencies of a saddle fixed point of the two-dimensional diffeomorphism are also established, associated to the snapback repeller bifurcation of the endomorphism defined by the Allee functions. The main results concern homoclinic and big bang bifurcations of the diffeomorphism as "germinal" bifurcations of the Allee functions. Our results confirm previous predictions of structures of homoclinic and big bang bifurcation curves in dimension one and extend these studies to "local" concepts of Allee effect and big bang bifurcations to this two-dimensional exponential diffeomorphism.
- Von Bertalanffy's dynamics under a polynomial correction: Allee effect and big bang bifurcationPublication . Rocha, J. Leonel; Taha, A. K.; Fournier-Prunaret, D.In this work we consider new one-dimensional populational discrete dynamical systems in which the growth of the population is described by a family of von Bertalanffy's functions, as a dynamical approach to von Bertalanffy's growth equation. The purpose of introducing Allee effect in those models is satisfied under a correction factor of polynomial type. We study classes of von Bertalanffy's functions with different types of Allee effect: strong and weak Allee's functions. Dependent on the variation of four parameters, von Bertalanffy's functions also includes another class of important functions: functions with no Allee effect. The complex bifurcation structures of these von Bertalanffy's functions is investigated in detail. We verified that this family of functions has particular bifurcation structures: the big bang bifurcation of the so-called "box-within-a-box" type. The big bang bifurcation is associated to the asymptotic weight or carrying capacity. This work is a contribution to the study of the big bang bifurcation analysis for continuous maps and their relationship with explosion birth and extinction phenomena.