Browsing by Author "Caldeira, Viviana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Comparison of the serum whole molecular composition with the serum metabolome to acquire the pathophysiological statePublication . Correia, Inês; Henrique Fonseca, Tiago Alexandre; Pataco, Jéssica; Oliveira, Mafalda; Caldeira, Viviana; Domingues, N.; Von Rekowski, Cristiana; Araújo, Rúben Alexandre Dinis; Bento, Luís; Calado, Cecília; Domingues, Nuno; Tomar, Rajesh Singh; Mahamud, TosapornOmics Sciences serve as an essential tool to advance precision medicine. Since conventional omics sciences rely on laborious, complex and time-consuming analytical processes, this study evaluated whether the serum molecular fingerprint, captured by FTIR spectroscopy, could predict mortality risk in critically ill patients. Both the whole serum and the serum metabolome (i.e., serum after removal of macromolecules) were analyzed. PCA-LDA models demonstrated strong performance in predicting patients’ pathophysiological state. A significantly more accurate model for predicting the patients’ pathophysiological state was achieved using the serum metabolome (94%) compared to the whole serum (81%). This is consistent with metabolomics, which provides a more direct view of the systems’ functionality. These promising results highlight the importance of FTIR spectroscopy analysis of the serum metabolome, offering a rapid, cost-effective, and high-throughput method for assessing patients' pathophysiological state.
- A new method for a rapid and high-throughput comparison of molecular profiles and biological activity of phytoextractsPublication . Caldeira, Viviana; Fonseca, Tiago AH; N'Dembo, Luana; Araújo, Rúben; Von Rekowski, Cristiana; Sampaio, Pedro; Calado, CecíliaTo robustly discover and explore phytocompounds, it is necessary to evaluate the interrelationships between the plant species, plant tissue, and the extraction process on the extract composition and to predict its cytotoxicity. The present work evaluated how Fourier Transform InfraRed spectroscopy can acquire the molecular profile of aqueous and ethanol-based extracts obtained from leaves, seeds, and flowers of Cynara Cardunculus, and ethanol-based extracts from Matricaria chamomilla flowers, as well the impact of these extracts on the viability of mammalian cells. The extract molecular profile enabled to predict the extraction yield, and how the plant species, plant tissue, and extraction process affected the extract's relative composition. The molecular profile obtained from the culture media of cells exposed to extracts enabled to capture its impact on cells metabolism, at a higher sensitivity than the conventional assay used to determine the cell viability. Furthermore, it was possible to detect specific impacts on the cell's metabolism according to plant species, plant tissue, and extraction process. Since spectra were acquired on small volumes of samples (25 µL), after a simple dehydration step, and based on a plate with 96 wells, the method can be applied in a rapid, simple, high-throughput, and economic mode, consequently promoting the discovery of phytocompounds.
- Predict cells viability, proliferation, and metabolic status, based in one unique and simple assayPublication . Caldeira, Viviana; Araújo, Rúben; Ramalhete, Luís; Calado, CecíliaA new method to simultaneously predict cells viability, proliferation and metabolic status, in a rapid, simple but also specific and sensitive mode was developed. The method is based on mid-infrared (MIR) spectroscopic analysis of cells. As model system were used Human embryonic kidney (HEK) 293 cells and T lymphocytes. After submitting cells to different environments as the toxic dimethyl sulfoxide, or metabolic activation, cells viability was analyzed by optical microscopy after coloration with trypan blue, and the cell count was determined with a Neubauer hemocytometer. The principal component analysis (PCA) of the cells second derivative spectra enabled to discriminate the cells viability and the cells proliferation as assayed by conventional methods, while spectra PCA and Hierarchical Cluster Analysis (HCA) enabled to discriminate T cells metabolic activation. The new methods, based on MIR spectroscopy, present the advantages of being applicable in automatic, simple and high-throughput mode in relation to the onventional methods.