Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.21/4047
Título: Categorical data clustering using a minimum message length criterion
Autor: Silvestre, Cláudia Marisa Vasconcelos
Cardoso, Margarida
Figueiredo, Mário
Palavras-chave: Cluster analysis
Categorical data
Expectation-maximization algorithm
MML - Minimum Message Lenght - criterion
Data: Out-2012
Citação: Silvestre, Cláudia; Cardoso, Margarida; Figueiredo, Mário - Categorical Data Clustering Using a Minimum Message Length Criterio. In THE ELEVENTH INTERNATIONAL SYMPOSIUM ON INTELLIGENT DATA ANALYSIS (IDA 2012), Helsinki, (Finland), 25–27 October 2012. Poster
Resumo: Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.
Peer review: yes
URI: http://hdl.handle.net/10400.21/4047
Versão do Editor: http://ida2012.org/program.pdf
Aparece nas colecções:ESCS - Posters

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
RESUMO_ida2012 CS MC MF.doc29 kBMicrosoft WordVer/Abrir

FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.