Logo do repositório
 
Publicação

Synthetic data generation for lane detection: validation and analysis

authorProfile.emailbiblioteca@isel.pt
dc.contributor.advisorAbrantes, Arnaldo Joaquim Castro
dc.contributor.authorCosta, Pedro Cláudio Amaro da
dc.date.accessioned2025-03-05T10:03:34Z
dc.date.available2025-03-05T10:03:34Z
dc.date.issued2024-12
dc.descriptionDissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Informatics and Multimedia Engineering
dc.description.abstractAbstract Autonomous driving systems rely absolutely on lane detection. Therefore, ensuring its reliability is crucial for road safety. This work proposes validating one of the leading lane detection models in the CULane benchmark with an alternative synthetic dataset, with full automated ground truth labeling, from Epic Games’ Unreal Engine 5—a dynamically enriched, photorealistic simulation environment. By providing a range of diverse and challenging conditions (circadian, climatic, and road types), we aim to analyze the algorithm’s robustness and, in parallel, collect reference indicators of the domain gap versus real-world datasets. Results reinforce the role of synthetic data in expanding test coverage and minimizing the imbalance of training datasets for safetycritical applications.eng
dc.identifier.citationCOSTA, Pedro Cláudio Amaro da – Synthetic data generation for lane detection: validation and analysis. Lisboa: Instituto Superior de Engenharia de Lisboa. 2024. Dissertação de Mestrado.
dc.identifier.tid203797680
dc.identifier.urihttp://hdl.handle.net/10400.21/21628
dc.language.isoeng
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSynthetic data
dc.subjectDomain gap
dc.subjectLane detection
dc.subjectAutonomous driving
dc.titleSynthetic data generation for lane detection: validation and analysiseng
dc.typemaster thesis
dspace.entity.typePublication
oaire.citation.endPage103
oaire.citation.startPage1
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
PedroCosta_MEIM.pdf
Tamanho:
113.7 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
4.03 KB
Formato:
Item-specific license agreed upon to submission
Descrição: