Logo do repositório
 
A carregar...
Miniatura
Publicação

Artificial Intelligence in refractive errors

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Artificial Intelligence in refractive errors.pdf30.52 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Uncorrected refractive errors (URE) are a leading cause of visual impairment (VI) and blindness. Big data acquisition and computer technology analysis are expanding quickly. By combining traditional techniques with artificial intelligence (AI) based tools, several studies have shown great potential in the detection, prediction, and risk stratification of URE, especially myopia. Continued improvement of imaging techniques and methods to measure refraction, coupled with the application of new AI algorithms, may be the future of clinical practice and standard of care for the diagnosis and prognosis of refractive errors. This chapter reviews how AI can be applied to the field of URE and discusses challenges to implementation into clinical practice and future directions.

Descrição

Palavras-chave

Ophthalmology Artificial Intelligence Uncorrected refractive errors Visual impairment Myopia detection Myopia prediction AI-based risk stratification AI algorithms in eye care

Contexto Educativo

Citação

Lança C, Emamian MH, Grzybowski A. Artificial Intelligence in refractive errors. In: Grzybowski A, editor. Artificial Intelligence in ophthalmology. Cham: Springer; 2025. p. 349-72.

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Springer Nature Switzerland

Métricas Alternativas