Name: | Description: | Size: | Format: | |
---|---|---|---|---|
8.28 MB | Adobe PDF |
Authors
Abstract(s)
A perda total ou parcial da capacidade funcional da mão interfere com o desempenho de atividades diárias. Estas podem derivar de acidentes traumáticos, doenças neurológicas, doenças músculo-esqueléticas e doenças vasculares, como o Acidente Vascular Cerebral (AVC). O uso de tecnologia vestível tem vindo a apresentar resultados eficazes em terapias de reabilitação assistida, proporcionando uma melhoria rápida, facilitando a reabilitação. Este Trabalho Final de Mestrado (TFM) pretende estudar e desenvolver um protótipo de um dispositivo vestível para a fisioterapia e reabilitação da mão humana, projetando e otimizando atuadores macios, reproduzíveis por moldes e impressos em 3D. Neste estudo utilizou-se o software Solidworks® na fase de modelação dos atuadores e moldes, e o Ansys® na análise dos elementos finitos na simulação do deslocamento (flexão) versus deformação dos atuadores durante a sua pressurização. Por fim, utilizou-se o software UltiMaker Cura 5.5.0® para fatiar os modelos 3D dos atuadores a imprimir na impressora Hello Bee Prusa®. Para o controlo da pressão nas câmaras internas dos atuadores foi implementado um controlador que permite variar a pressão de entrada, num intervalo de 0 a 1,5 bar. No caso do atuador em silicone DragonSkin Fast 10® (2.6 mm de espessura), obteve-se como valor de pressão máxima: 0,3 bar, Posteriormente, foi efetuado os ensaios experimentais de pressão versus deslocamento, com recurso ao software Kinovea®, para uma análise de movimentos, e pressão versus força, com auxílio do sensor de força, permitiram concluir que os atuadores em Dragon Skin Fast 10® (2.6 mm de espessura), no modelo Yap, obtiveram melhores resultados, com uma flexão máxima de 162º a uma pressão mínima de 0,2 bar, e uma força máxima de 61,31 N. Obteve-se no final deste TFM um protótipo de exosqueleto funcional para fisioterapia da mão.
Abstract The total or partial loss of hand functionality interferes with the performance of daily activities. These impairments can stem from traumatic accidents, neurological diseases, musculoskeletal disorders, and vascular conditions, such as Stroke (CVA). The use of wearable devices has shown effective results in assisted rehabilitation therapies, offering rapid improvement and facilitating rehabilitation. This Master's Final Project (MFP) aims to study and develop a prototype of a wearable device for physiotherapy and hand rehabilitation, by designing and optimizing soft actuators that are reproducible using molds and 3D printing. In this study, Solidworks® software was used during the modeling phase of the actuators and molds, while Ansys® was employed for finite element analysis in the simulation of displacement (flexion) versus deformation of the actuators during pressurization. Lastly, UltiMaker Cura 5.5.0® software was utilized to slice the 3D models of the actuators for printing on the Hello Bee Prusa® printer. For pressure control within the actuators' internal chambers, a controller was implemented to vary the input pressure within a range of 0 to 1.5 bar. For the DragonSkin Fast 10® silicone actuator (2.6 mm thick), a maximum pressure of 0.3 bar was achieved. Subsequently, experimental tests of pressure versus displacement, using Kinovea® a software for motion analysis, and pressure versus force, with the aid of a force sensor, allowed the conclusion that the Dragon Skin Fast 10® actuators (2.6 mm thick), in the Yap model, achieved the best results, with a maximum flexion of 162º at a minimum pressure of 0.2 bar, and a maximum force of 61.31 N. At the conclusion of this MFP, a functional exoskeleton prototype for hand physiotherapy was developed.
Abstract The total or partial loss of hand functionality interferes with the performance of daily activities. These impairments can stem from traumatic accidents, neurological diseases, musculoskeletal disorders, and vascular conditions, such as Stroke (CVA). The use of wearable devices has shown effective results in assisted rehabilitation therapies, offering rapid improvement and facilitating rehabilitation. This Master's Final Project (MFP) aims to study and develop a prototype of a wearable device for physiotherapy and hand rehabilitation, by designing and optimizing soft actuators that are reproducible using molds and 3D printing. In this study, Solidworks® software was used during the modeling phase of the actuators and molds, while Ansys® was employed for finite element analysis in the simulation of displacement (flexion) versus deformation of the actuators during pressurization. Lastly, UltiMaker Cura 5.5.0® software was utilized to slice the 3D models of the actuators for printing on the Hello Bee Prusa® printer. For pressure control within the actuators' internal chambers, a controller was implemented to vary the input pressure within a range of 0 to 1.5 bar. For the DragonSkin Fast 10® silicone actuator (2.6 mm thick), a maximum pressure of 0.3 bar was achieved. Subsequently, experimental tests of pressure versus displacement, using Kinovea® a software for motion analysis, and pressure versus force, with the aid of a force sensor, allowed the conclusion that the Dragon Skin Fast 10® actuators (2.6 mm thick), in the Yap model, achieved the best results, with a maximum flexion of 162º at a minimum pressure of 0.2 bar, and a maximum force of 61.31 N. At the conclusion of this MFP, a functional exoskeleton prototype for hand physiotherapy was developed.
Description
Keywords
Atuador pneumático macio Reabilitação da mão Exosqueleto para fisioterapia Dispositivo vestível Soft pneumatic actuator Hand rehabilitation Exoskeleton for physiotherapy Wearable device