Repository logo
 
Publication

Interpolating CTS specimens' mode I and II stress intensity factors using artificial neural networks

authorProfile.emailbiblioteca@isel.pt
datacite.subject.fosEngenharia e Tecnologia::Engenharia Mecânica
dc.contributor.authorMiguel Gomes Simões Baptista, Ricardo
dc.contributor.authorInfante, Virgínia
dc.contributor.authorBorrego, L. F. P.
dc.contributor.authorSérgio, Edmundo R.
dc.contributor.authorNeto, Diogo M.
dc.contributor.authorAntunes, F. V.
dc.date.accessioned2025-09-03T12:46:02Z
dc.date.available2025-09-03T12:46:02Z
dc.date.issued2024-12
dc.description.abstractFracture mechanics parameters, such as the stress intensity factor (SIF), are fundamental for the analysis of fracture, fatigue crack growth and crack paths. SIFs of a cracked body can be determined either experimentally or numerically. Analytical solutions of SIF are very useful, but their determination from discrete values can be extremely complex when there are many independent variables. In this paper, artificial neural networks (ANN) are proposed to predict mode I and II stress intensity factors in a CTS specimen under mixed mode loading conditions. Trained with numerical data, the performance of different network architectures and backpropagation algorithms was assessed. Using at least 10 neurons, in the hidden layers, made it possible for the designed solution to match the performance of analytical solutions. Increasing the number of neurons, allowed the model performance to improve up to 90%, when compared with previous analytical solutions. This increases the quality of fracture and fatigue studies done with the CTS sample.eng
dc.identifier.citationBaptista, R., Infante, V., Borrego, L. F. P., Sérgio, E. R., Neto, D. M., & Antunes, F. V. (2024). Interpolating CTS specimens' mode I and II stress intensity factors using artificial neural networks. Theorical and Applied Fracture Mechanics, 134, Part B, 1-16. https://doi.org/10.1016/j.tafmec.2024.104761
dc.identifier.doihttps://doi.org/10.1016/j.tafmec.2024.104761
dc.identifier.eissn1872-7638
dc.identifier.issn0167-8442
dc.identifier.urihttp://hdl.handle.net/10400.21/22101
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationCentre for Mechanical Enginnering, Materials and Processes
dc.relationLA/P/0112/2020
dc.relationFACI-2023-MPR-04-014323
dc.relation.hasversionhttps://www.sciencedirect.com/science/article/pii/S0167844224005111?via%3Dihub
dc.relation.ispartofseriesPart B
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCTS Specimen
dc.subjectMixed mode loading
dc.subjectStress intensity factor
dc.subjectArtificial neural networks
dc.titleInterpolating CTS specimens' mode I and II stress intensity factors using artificial neural networkseng
dc.typeresearch article
dspace.entity.typePublication
oaire.awardTitleCentre for Mechanical Enginnering, Materials and Processes
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00285%2F2020/PT
oaire.citation.endPage16
oaire.citation.startPage1
oaire.citation.titleTheorical and Applied Fracture Mechanics
oaire.citation.volume134
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_be7fb7dd8ff6fe43
person.familyNameMiguel Gomes Simões Baptista
person.givenNameRicardo
person.identifierN-6383-2013
person.identifier.ciencia-id4B19-FC15-14D9
person.identifier.orcid0000-0002-5955-8418
person.identifier.scopus-author-id7005968277
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationd16b9294-0a46-4eed-970a-9ecf1273a1bd
relation.isAuthorOfPublication.latestForDiscoveryd16b9294-0a46-4eed-970a-9ecf1273a1bd
relation.isProjectOfPublication1b227fae-eec8-4725-9936-e91695cce25d
relation.isProjectOfPublication.latestForDiscovery1b227fae-eec8-4725-9936-e91695cce25d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Interpolating_RBaptista.pdf
Size:
5.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.03 KB
Format:
Item-specific license agreed upon to submission
Description: