Publication
Enhanced PCA-based localization using depth maps with missing data
dc.contributor.author | Carreira, Fernando | |
dc.contributor.author | Calado, João Manuel Ferreira | |
dc.contributor.author | Cardeira, Carlos | |
dc.contributor.author | Oliveira, Paulo | |
dc.date.accessioned | 2016-03-08T15:49:30Z | |
dc.date.available | 2016-03-08T15:49:30Z | |
dc.date.issued | 2015-02 | |
dc.description.abstract | In this paper a new method for self-localization of mobile robots, based on a PCA positioning sensor to operate in unstructured environments, is proposed and experimentally validated. The proposed PCA extension is able to perform the eigenvectors computation from a set of signals corrupted by missing data. The sensor package considered in this work contains a 2D depth sensor pointed upwards to the ceiling, providing depth images with missing data. The positioning sensor obtained is then integrated in a Linear Parameter Varying mobile robot model to obtain a self-localization system, based on linear Kalman filters, with globally stable position error estimates. A study consisting in adding synthetic random corrupted data to the captured depth images revealed that this extended PCA technique is able to reconstruct the signals, with improved accuracy. The self-localization system obtained is assessed in unstructured environments and the methodologies are validated even in the case of varying illumination conditions. | pt_PT |
dc.identifier.citation | CARREIRA, Fernando; [et al.] - Enhanced PCA-based localization using depth maps with missing data. Journal of Intelligent & Robotics Systems. ISSN. 0921-0296. Vol. 77, N.º 2, SI (2015), pp. 341-360 | pt_PT |
dc.identifier.doi | 10.1007/s10846-013-0013-6 | pt_PT |
dc.identifier.issn | 0921-0296 | |
dc.identifier.issn | 1573-0409 | |
dc.identifier.uri | http://hdl.handle.net/10400.21/5809 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Springer | pt_PT |
dc.relation.ispartofseries | SI; | |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs10846-013-0013-6 | pt_PT |
dc.subject | Mobile robots | pt_PT |
dc.subject | Robot sensing systems | pt_PT |
dc.subject | Sensor fusion | pt_PT |
dc.subject | Principal component analysis | pt_PT |
dc.subject | Kalman filters | pt_PT |
dc.title | Enhanced PCA-based localization using depth maps with missing data | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 360 | pt_PT |
oaire.citation.issue | 2 | pt_PT |
oaire.citation.startPage | 341 | pt_PT |
oaire.citation.volume | 77 | pt_PT |
person.familyName | Neves da Fonseca Cardoso Carreira | |
person.familyName | Calado | |
person.givenName | Fernando Paulo | |
person.givenName | João | |
person.identifier | 370725 | |
person.identifier.ciencia-id | D019-D006-510B | |
person.identifier.ciencia-id | B518-93E3-E7AB | |
person.identifier.orcid | 0000-0002-9873-5050 | |
person.identifier.orcid | 0000-0001-6628-4657 | |
person.identifier.rid | M-4167-2013 | |
person.identifier.scopus-author-id | 7006897277 | |
rcaap.rights | closedAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 0cc1e99c-99cc-48dc-b13e-beacade8905d | |
relation.isAuthorOfPublication | 602b1546-f4f1-4cd5-8d29-d835d54c9bd6 | |
relation.isAuthorOfPublication.latestForDiscovery | 602b1546-f4f1-4cd5-8d29-d835d54c9bd6 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Enhanced PCA-based localization using depth maps with missing data.pdf
- Size:
- 3.08 MB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: