Loading...
Research Project
Untitled
Funder
Authors
Publications
Emergence of biaxial nematic phases in solutions of semiflexible dimers
Publication . Vaghela, Arvin; Teixeira, Paulo; Terentjev, Eugene M.
We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions between them, for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected by a spacer with variable bending stiffness. We apply density-functional theory within the Onsager approximation to describe strictly excluded-volume interactions in this athermal model and to self-consistently find the orientational order parameters dictated by its complex symmetry, as functions of the density. Earlier work on lyotropic ordering of rigid bent-rod molecules is reproduced and extended to show explicitly the continuous phase transition at the Landau point, at a critical bend angle of 36.. For flexible dimers with no intrinsic biaxiality, we find that a biaxial nematic phase can nevertheless form at a sufficiently high density and low bending stiffness. For bending stiffness kappa > 0.86k(B)T, this biaxial phase manifests as dimer bending fluctuations occurring preferentially in one plane. When the dimers are more flexible, kappa < 0.86k(B)T, the modal shape of the fluctuating dimer is a V with an acute opening angle, and one of the biaxial order parameters changes sign, indicating a rotation of the directors. These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which we generate in terms of the spacer stiffness and particle density.
Free energy calculations for rings and chains formed by dipolar hard spheres
Publication . Ronti, Michela; Rovigatti, Lorenzo; Tavares, Jose; Ivanov, Alexey O.; Kantorovichaf, Sofia S.; SCIORTINO, Francesco
We employ a method based on Monte Carlo grand-canonical simulations to precisely calculate partition functions of non-interacting chains and rings formed by dipolar hard spheres (DHS) at low temperature. The extended low temperature region offered by such cluster calculations, compared to what had been previously achieved with standard simulations, opens up the possibility of exploring a part of the DHS phase diagram which was inaccessible before. The reported results offer the unique opportunity of verifying well-established theoretical models based on the ideal gas of cluster approximation in order to clarify their range of validity. They also provide the basis for future studies in which cluster–cluster interactions will be included.
Criticality of colloids with three distinct interaction patches: As simple as A, B, C?
Publication . Tavares, Jose; Teixeira, Paulo
We systematically study the phase behavior of a simple model of associating fluids which consists of hard spherical particles with three short-ranged attractive sites on their surfaces (sticky spots or patches), of types A, B, and C, that can form bonds with energy ij (i,j = A,B,C). We consider realizations of the model with one, two, or three nonzero ij. Using Wertheim’s first order perturbation theory of association, we establish the minimum requirements on the bond energies for the model to exhibit a liquid-vapor critical point, and investigate the nature of criticality in each case. As a preliminary, we rigorously show that, within this theory, particles with M identical sites do not condense if M < 3, a result that was previously conjectured, but never proved.
When is a surface foam-phobic or foam-philic?
Publication . Teixeira, Miguel; Arscott, Steve; Cox, Simon; Teixeira, Paulo
It is commonly assumed that the liquid making up a sessile bubble completely wets the surface upon which the bubble lies. However, this need not be so, and the degree of wetting will determine how well a collection of bubbles - a foam - sticks to a surface. As a preliminary to this difficult problem, we study the shape of a single vertical soap film spanning the gap between two flat, horizontal solid substrates of given wettabilities. For this simple geometry, the Young-Laplace equation can be solved (quasi-) analytically to yield the equilibrium shapes, under gravity, of the two-dimensional Plateau borders along which the film contacts the substrates. We thus show that these Plateau borders, where most of a foam's liquid resides, can only exist if the values of the Bond number Bo and of the liquid contact angle yc lie within certain domains in (yc, Bo) space: under these conditions the substrate is foam-philic. For values outside these domains, the substrate cannot support a soap film and it is foam-phobic. In other words, on a substrate of a given wettability, only Plateau borders of a certain range of sizes can form. For given (yc, Bo), the top Plateau border can never have greater width or cross-sectional area than the bottom one. Moreover, the top Plateau border cannot exist in a steady state for contact angles above 901. Our conclusions are validated by comparison with both experimental and numerical (Surface Evolver) data. We conjecture that these results will hold, with slight modifications, for non-planar soap films and bubbles. Our results are also relevant to the motion of bubbles and foams in channels, where the friction force of the substrate on the Plateau borders plays an important role.
Dynamics of patchy particles in and out of equilibrium
Publication . Tavares, Jose; Dias, Cristóvão; Araujo, Nuno; Gama, Margarida
We combine particle-based simulations, mean-field rate equations, and Wertheim's theory to study the dynamics of patchy particles in and out of equilibrium, at different temperatures and densities. We consider an initial random distribution of nonoverlapping three-patch particles, with no bonds, and analyze the time evolution of the breaking and bonding rates of a single bond. We find that the asymptotic (equilibrium) dynamics differs from the initial (out of equilibrium) one. These differences are expected to depend on the initial conditions, temperature, and density.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
EXCL/FIS-NAN/0083/2012