Repository logo
 
Loading...
Project Logo
Research Project

Center for Research and Development in Mathematics and Applications

Authors

Publications

Impact of SM parameters and of the vacua of the Higgs potential in gravitational waves detection
Publication . Freitas, Felipe F.; Lourenço, Gabriel; Morais, António P.; Nunes, André; Olívia, João; Pasechnik, Roman; Santos, Rui; Viana, João
In this work we discuss two different phases of a complex singlet extension of the Standard Model (SM) together with an extension that also includes new fermion fields, in particular, a Majoron model equipped with an inverse seesaw mechanism. All considered scenarios contain a global U(1) symmetry and allow for first-order phase transitions while only two of them are strong enough to favour the detection of primordial gravitational waves (GWs) in planned experiments such as LISA. In particular, this is shown to be possible in the singlet extension with a non vanishing real VEV at zero temperature and also in the model with extra fermions. In the singlet extension with no additional fermions, the detection of GWs strongly depends on the U(1) symmetry breaking pattern of the scalar potential at zero temperature. We study for the first time the impact of the precision in the determination of the SM parameters on the strength of the GWs spectrum. It turns out that the variation of the SM parameters such as the Higgs boson mass and top quark Yukawa coupling in their allowed experimental ranges has a notable impact on GWs detectability prospect
Phenomenology of a flavored multiscalar Branco-Grimus-Lavoura-like model with three generations of massive neutrinos
Publication . Ferreira, Pedro Miguel; Freitas, Felipe F.; Pino Gonçalves, João; Morais, António P.; Pasechnik, Roman; Vatellis, Vasileios
In this paper, we present several possible anomaly free implementations of the Branco-Grimus-Lavoura (BGL) model with two Higgs doublets and one singlet scalar. The model also includes three generations of massive neutrinos that get their mass via a type-I seesaw mechanism. A particular anomaly free realization, which we dub νBGL-1 scenario, is subjected to an extensive phenomenological analysis, from the perspective of flavor physics and collider phenomenology.
Deep learning searches for vector-like leptons at the LHC and electron/muon colliders
Publication . Morais, António P.; Onofre, António; Freitas, Felipe F.; Gonçalves, João; Pasechnik, Roman; Santos, Rui
he discovery potential of both singlet and doublet vector-like leptons (VLLs) at the Large Hadron Collider (LHC) as well as at the not-so-far future muon and electron machines is explored. The focus is on a single production channel for LHC direct searches while double production signatures are proposed for the leptonic colliders. A Deep Learning algorithm to determine the discovery (or exclusion) statistical significance at the LHC is employed. While doublet VLLs can be probed up to masses of 1 TeV, their singlet counterparts have very low cross sections and can hardly be tested beyond a few hundreds of GeV at the LHC. This motivates a physics-case analysis in the context of leptonic colliders where one obtains larger cross sections in VLL double production channels, allowing to probe higher mass regimes otherwise inaccessible even to the LHC high-luminosity upgrade.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

UIDB/04106/2020

ID